Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Apoptosis and necroptosis in the liver: a matter of life and death

Abstract

Cell death represents a basic biological paradigm that governs outcomes and long-term sequelae in almost every hepatic disease condition. Acute liver failure is characterized by massive loss of parenchymal cells but is usually followed by restitution ad integrum. By contrast, cell death in chronic liver diseases often occurs at a lesser extent but leads to long-term alterations in organ architecture and function, contributing to chronic hepatocyte turnover, the recruitment of immune cells and activation of hepatic stellate cells. These chronic cell death responses contribute to the development of liver fibrosis, cirrhosis and cancer. It has become evident that, besides apoptosis, necroptosis is a highly relevant form of programmed cell death in the liver. Differential activation of specific forms of programmed cell death might not only affect outcomes in liver diseases but also offer novel opportunities for therapeutic intervention. Here, we summarize the underlying molecular mechanisms and open questions about disease-specific activation and roles of programmed cell death forms, their contribution to response signatures and their detection. We focus on the role of apoptosis and necroptosis in acute liver injury, nonalcoholic fatty liver disease (NAFLD), nonalcoholic steatohepatitis (NASH) and liver cancer, and possible translations into clinical applications.

Key points

  • Cell death is a fundamental driver of liver disease progression to liver fibrosis, cirrhosis and hepatocellular carcinoma.

  • Depending on the underlying disease entity, distinct forms of programmed cell death and cell death response pathways can be activated in the liver.

  • Necroptosis is a new form of programmed cell death that is activated by the necrosome, which consists of the kinases receptor-interacting serine/threonine-protein kinase 1 (RIPK1) and RIPK3 and the pseudokinase mixed lineage kinase domain-like protein (MLKL).

  • Despite necroptosis being challenging to detect in vivo, there is accumulating evidence that this cell death form is a pathogenically relevant driver in several liver diseases that were associated with apoptosis.

  • Necroptosis seems to be particularly important in nonalcoholic fatty liver disease, nonalcoholic steatohepatitis and liver cancer but does not contribute to acetaminophen toxicity or ischaemia–reperfusion injury.

  • A better functional characterization of necroptosis in liver disease models might lead to novel therapeutic strategies that target necroptosis to prevent the progression and decompensation of chronic liver disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mediators of TNF-dependent programmed cell death.
Fig. 2: Mechanisms of death receptor-induced apoptosis.
Fig. 3: Apoptosis and necroptosis and the development of liver cirrhosis and hepatocellular carcinoma.

Similar content being viewed by others

References

  1. Michalopoulos, G. K. & DeFrances, M. Liver regeneration. Adv. Biochem. Eng. Biotechnol. 93, 101–134 (2005).

    PubMed  CAS  Google Scholar 

  2. Benedetti, A., Jezequel, A. M. & Orlandi, F. Preferential distribution of apoptotic bodies in acinar zone 3 of normal human and rat liver. J. Hepatol. 7, 319–324 (1988).

    PubMed  CAS  Google Scholar 

  3. Luedde, T., Kaplowitz, N. & Schwabe, R. F. Cell death and cell death responses in liver disease: mechanisms and clinical relevance. Gastroenterology 147, 765–783 (2014).

    PubMed  CAS  Google Scholar 

  4. Villanueva, A. & Luedde, T. The transition from inflammation to cancer in the liver. Clin. Liver Dis. 8, 89–93 (2016).

    Google Scholar 

  5. Schuppan, D. & Afdhal, N. H. Liver cirrhosis. Lancet 371, 838–851 (2008).

    PubMed  PubMed Central  CAS  Google Scholar 

  6. Wallach, D., Kang, T. B., Dillon, C. P. & Green, D. R. Programmed necrosis in inflammation: toward identification of the effector molecules. Science https://doi.org/10.1126/science.aaf2154 (2016).

    Article  PubMed  Google Scholar 

  7. Yuan, J., Najafov, A. & Py, B. F. Roles of caspases in necrotic cell death. Cell 167, 1693–1704 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  8. Stockwell, B. R. et al. Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell 171, 273–285 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  9. Vande Walle, L. & Lamkanfi, M. Pyroptosis. Curr. Biol. 26, R568–R572 (2016).

    PubMed  CAS  Google Scholar 

  10. Fuchs, Y. & Steller, H. Programmed cell death in animal development and disease. Cell 147, 742–758 (2011).

    PubMed  PubMed Central  CAS  Google Scholar 

  11. Galluzzi, L., Lopez-Soto, A., Kumar, S. & Kroemer, G. Caspases connect cell-death signaling to organismal homeostasis. Immunity 44, 221–231 (2016).

    PubMed  CAS  Google Scholar 

  12. Fan, Y. & Bergmann, A. Apoptosis-induced compensatory proliferation. The cell is dead. long live the cell! Trends Cell Biol. 18, 467–473 (2008).

    PubMed  PubMed Central  CAS  Google Scholar 

  13. Jorgensen, I., Rayamajhi, M. & Miao, E. A. Programmed cell death as a defence against infection. Nat. Rev. Immunol. 17, 151–164 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  14. Linkermann, A. & Green, D. R. Necroptosis. N. Engl. J. Med. 370, 455–465 (2014).

    PubMed  PubMed Central  CAS  Google Scholar 

  15. Louandre, C. et al. The retinoblastoma (Rb) protein regulates ferroptosis induced by sorafenib in human hepatocellular carcinoma cells. Cancer Lett. 356, 971–977 (2015).

    PubMed  CAS  Google Scholar 

  16. Wang, H. et al. Characterization of ferroptosis in murine models of hemochromatosis. Hepatology 66, 449–465 (2017).

    PubMed  CAS  Google Scholar 

  17. Wree, A. et al. NLRP3 inflammasome activation results in hepatocyte pyroptosis, liver inflammation, and fibrosis in mice. Hepatology 59, 898–910 (2014).

    PubMed  CAS  Google Scholar 

  18. Bialik, S. & Kimchi, A. Lethal weapons: DAP-kinase, autophagy and cell death: DAP-kinase regulates autophagy. Curr. Opin. Cell Biol. 22, 199–205 (2010).

    PubMed  CAS  Google Scholar 

  19. Alegre, F., Pelegrin, P. & Feldstein, A. E. Inflammasomes in liver fibrosis. Semin. Liver Dis. 37, 119–127 (2017).

    PubMed  CAS  Google Scholar 

  20. Angeli, J. P. F., Shah, R., Pratt, D. A. & Conrad, M. Ferroptosis inhibition: mechanisms and opportunities. Trends Pharmacol. Sci. 38, 489–498 (2017).

    PubMed  CAS  Google Scholar 

  21. Majno, G. & Joris, I. Apoptosis, oncosis, and necrosis. An overview of cell death. Am. J. Pathol. 146, 3–15 (1995).

    PubMed  PubMed Central  CAS  Google Scholar 

  22. Van Cruchten, S. & Van Den Broeck, W. Morphological and biochemical aspects of apoptosis, oncosis and necrosis. Anat. Histol. Embryol. 31, 214–223 (2002).

    PubMed  Google Scholar 

  23. Malhi, H., Gores, G. J. & Lemasters, J. J. Apoptosis and necrosis in the liver: a tale of two deaths? Hepatology 43, S31–S44 (2006).

    PubMed  CAS  Google Scholar 

  24. Davidovich, P., Kearney, C. J. & Martin, S. J. Inflammatory outcomes of apoptosis, necrosis and necroptosis. Biol. Chem. 395, 1163–1171 (2014).

    PubMed  CAS  Google Scholar 

  25. McIlwain, D. R., Berger, T. & Mak, T. W. Caspase functions in cell death and disease. Cold Spring Harb Perspect Biol 5, https://doi.org/10.1101/cshperspect.a008656 (2013).

    PubMed  PubMed Central  Google Scholar 

  26. Liedtke, C. & Trautwein, C. The role of TNF and Fas dependent signaling in animal models of inflammatory liver injury and liver cancer. Eur. J. Cell Biol. 91, 582–589 (2012).

    PubMed  CAS  Google Scholar 

  27. Schwabe, R. F. & Brenner, D. A. Mechanisms of Liver Injury. I. TNF-alpha-induced liver injury: role of IKK, JNK, and ROS pathways. Am. J. Physiol. Gastrointest. Liver Physiol. 290, G583–G589 (2006).

    PubMed  CAS  Google Scholar 

  28. Dondelinger, Y., Darding, M., Bertrand, M. J. & Walczak, H. Poly-ubiquitination in TNFR1-mediated necroptosis. Cell. Mol. Life Sci. 73, 2165–2176 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  29. Bettermann, K. et al. TAK1 suppresses a NEMO-dependent but NF-kappaB-independent pathway to liver cancer. Cancer Cell 17, 481–496 (2010).

    PubMed  CAS  Google Scholar 

  30. Vucur, M. et al. RIP3 inhibits inflammatory hepatocarcinogenesis but promotes cholestasis by controlling caspase-8- and JNK-dependent compensatory cell proliferation. Cell Rep. 4, 776–790 (2013).

    PubMed  CAS  Google Scholar 

  31. Luedde, T. et al. Deletion of NEMO/IKKgamma in liver parenchymal cells causes steatohepatitis and hepatocellular carcinoma. Cancer Cell 11, 119–132 (2007).

    PubMed  CAS  Google Scholar 

  32. Kondylis, V. et al. NEMO prevents steatohepatitis and hepatocellular carcinoma by inhibiting RIPK1 kinase activity-mediated hepatocyte apoptosis. Cancer Cell 28, 582–598 (2015).

    PubMed  PubMed Central  CAS  Google Scholar 

  33. Luedde, T. et al. IKK1 and IKK2 cooperate to maintain bile duct integrity in the liver. Proc. Natl Acad. Sci. USA 105, 9733–9738 (2008).

    PubMed  CAS  PubMed Central  Google Scholar 

  34. Yin, X. M. & Ding, W. X. Death receptor activation-induced hepatocyte apoptosis and liver injury. Curr. Mol. Med. 3, 491–508 (2003).

    PubMed  CAS  Google Scholar 

  35. Guicciardi, M. E., Malhi, H., Mott, J. L. & Gores, G. J. Apoptosis and necrosis in the liver. Compr. Physiol. 3, 977–1010 (2013).

    PubMed  Google Scholar 

  36. Koppe, C. et al. IkappaB kinasealpha/beta control biliary homeostasis and hepatocarcinogenesis in mice by phosphorylating the cell-death mediator receptor-interacting protein kinase 1. Hepatology 64, 1217–1231 (2016).

    PubMed  CAS  Google Scholar 

  37. Schneider, A. T. et al. RIPK1 Suppresses a TRAF2-dependent pathway to liver cancer. Cancer Cell 31, 94–109 (2017).

    PubMed  CAS  Google Scholar 

  38. Vucur, M., Schneider, A. T., Gautheron, J. & Luedde, T. The enigma of RIPK1 in the liver: more than just a kinase. Mol. Cell Oncol. 4, e1304191 (2017).

    PubMed  PubMed Central  Google Scholar 

  39. Laster, S. M., Wood, J. G. & Gooding, L. R. Tumor necrosis factor can induce both apoptic and necrotic forms of cell lysis. J. Immunol. 141, 2629–2634 (1988).

    CAS  PubMed  Google Scholar 

  40. Vercammen, D. et al. Inhibition of caspases increases the sensitivity of L929 cells to necrosis mediated by tumor necrosis factor. J. Exp. Med. 187, 1477–1485 (1998).

    PubMed  PubMed Central  CAS  Google Scholar 

  41. Holler, N. et al. Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule. Nat. Immunol. 1, 489–495 (2000).

    PubMed  CAS  Google Scholar 

  42. Degterev, A. et al. Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat. Chem. Biol. 1, 112–119 (2005).

    PubMed  CAS  Google Scholar 

  43. Zhang, D. W. et al. RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science 325, 332–336 (2009).

    PubMed  CAS  Google Scholar 

  44. He, S. et al. Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha. Cell 137, 1100–1111 (2009).

    PubMed  CAS  Google Scholar 

  45. Cho, Y. S. et al. Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell 137, 1112–1123 (2009).

    PubMed  PubMed Central  CAS  Google Scholar 

  46. Sun, L. et al. Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell 148, 213–227 (2012).

    PubMed  CAS  Google Scholar 

  47. Gong, Y. N., Guy, C., Crawford, J. C. & Green, D. R. Biological events and molecular signaling following MLKL activation during necroptosis. Cell Cycle 16, 1748–1760 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  48. Newton, K. et al. Activity of protein kinase RIPK3 determines whether cells die by necroptosis or apoptosis. Science 343, 1357–1360 (2014).

    PubMed  CAS  Google Scholar 

  49. Tummers, B. & Green, D. R. Caspase-8: regulating life and death. Immunol. Rev. 277, 76–89 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  50. Ravichandran, K. S. Beginnings of a good apoptotic meal: the find-me and eat-me signaling pathways. Immunity 35, 445–455 (2011).

    PubMed  PubMed Central  CAS  Google Scholar 

  51. Martin, S. J., Henry, C. M. & Cullen, S. P. A perspective on mammalian caspases as positive and negative regulators of inflammation. Mol. Cell 46, 387–397 (2012).

    PubMed  CAS  Google Scholar 

  52. Bosurgi, L., Hughes, L. D., Rothlin, C. V. & Ghosh, S. Death begets a new beginning. Immunol. Rev. 280, 8–25 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  53. Kaczmarek, A., Vandenabeele, P. & Krysko, D. V. Necroptosis: the release of damage-associated molecular patterns and its physiological relevance. Immunity 38, 209–223 (2013).

    PubMed  CAS  Google Scholar 

  54. Kumar, S., Calianese, D. & Birge, R. B. Efferocytosis of dying cells differentially modulate immunological outcomes in tumor microenvironment. Immunol. Rev. 280, 149–164 (2017).

    PubMed  CAS  PubMed Central  Google Scholar 

  55. Lemasters, J. J. Dying a thousand deaths: redundant pathways from different organelles to apoptosis and necrosis. Gastroenterology 129, 351–360 (2005).

    PubMed  Google Scholar 

  56. Matzinger, P. The danger model: a renewed sense of self. Science 296, 301–305 (2002).

    PubMed  CAS  Google Scholar 

  57. Kang, T. B., Yang, S. H., Toth, B., Kovalenko, A. & Wallach, D. Caspase-8 blocks kinase RIPK3-mediated activation of the NLRP3 inflammasome. Immunity 38, 27–40 (2013).

    PubMed  CAS  Google Scholar 

  58. Lawlor, K. E. et al. RIPK3 promotes cell death and NLRP3 inflammasome activation in the absence of MLKL. Nat. Commun. 6, 6282 (2015).

    PubMed  CAS  Google Scholar 

  59. Moriwaki, K., Bertin, J., Gough, P. J. & Chan, F. K. A. RIPK3-caspase 8 complex mediates atypical pro-IL-1beta processing. J. Immunol. 194, 1938–1944 (2015).

    PubMed  CAS  Google Scholar 

  60. Seki, E. & Schwabe, R. F. Hepatic inflammation and fibrosis: functional links and key pathways. Hepatology 61, 1066–1079 (2015).

    PubMed  Google Scholar 

  61. Zhan, S. S. et al. Phagocytosis of apoptotic bodies by hepatic stellate cells induces NADPH oxidase and is associated with liver fibrosis in vivo. Hepatology 43, 435–443 (2006).

    PubMed  CAS  Google Scholar 

  62. Canbay, A. et al. Apoptotic body engulfment by a human stellate cell line is profibrogenic. Lab Invest. 83, 655–663 (2003).

    PubMed  CAS  Google Scholar 

  63. Affo, S., Yu, L. X. & Schwabe, R. F. The role of cancer-associated fibroblasts and fibrosis in liver cancer. Annu. Rev. Pathol. 12, 153–186 (2017).

    PubMed  CAS  Google Scholar 

  64. Sun, B. & Karin, M. Inflammation and liver tumorigenesis. Front. Med. 7, 242–254 (2013).

    PubMed  Google Scholar 

  65. Michalopoulos, G. K. & DeFrances, M. C. Liver regeneration. Science 276, 60–66 (1997).

    PubMed  CAS  Google Scholar 

  66. Schaub, J. R., Malato, Y., Gormond, C. & Willenbring, H. Evidence against a stem cell origin of new hepatocytes in a common mouse model of chronic liver injury. Cell Rep. 8, 933–939 (2014).

    PubMed  PubMed Central  CAS  Google Scholar 

  67. Malato, Y. et al. Fate tracing of mature hepatocytes in mouse liver homeostasis and regeneration. J. Clin. Invest. 121, 4850–4860 (2011).

    PubMed  PubMed Central  CAS  Google Scholar 

  68. Yanger, K. et al. Adult hepatocytes are generated by self-duplication rather than stem cell differentiation. Cell Stem Cell 15, 340–349 (2014).

    PubMed  PubMed Central  CAS  Google Scholar 

  69. Sharpless, N. E. & DePinho, R. A. How stem cells age and why this makes us grow old. Nat. Rev. Mol. Cell Biol. 8, 703–713 (2007).

    PubMed  CAS  Google Scholar 

  70. Morrison, S. J. & Kimble, J. Asymmetric and symmetric stem-cell divisions in development and cancer. Nature 441, 1068–1074 (2006).

    PubMed  CAS  Google Scholar 

  71. Boege, Y. et al. A dual role of Caspase-8 in triggering and sensing proliferation-associated DNA damage, a key determinant of liver cancer development. Cancer Cell 32, 342–359 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  72. Galluzzi, L., Buque, A., Kepp, O., Zitvogel, L. & Kroemer, G. Immunological effects of conventional chemotherapy and targeted anticancer agents. Cancer Cell 28, 690–714 (2015).

    PubMed  CAS  Google Scholar 

  73. Garg, A. D. & Agostinis, P. Cell death and immunity in cancer: from danger signals to mimicry of pathogen defense responses. Immunol. Rev. 280, 126–148 (2017).

    PubMed  CAS  Google Scholar 

  74. Krysko, O. et al. Necroptotic cell death in anti-cancer therapy. Immunol. Rev. 280, 207–219 (2017).

    PubMed  CAS  Google Scholar 

  75. Beutler, B. Neo-ligands for innate immune receptors and the etiology of sterile inflammatory disease. Immunol. Rev. 220, 113–128 (2007).

    PubMed  CAS  Google Scholar 

  76. Weerasinghe, S. V., Park, M. J., Portney, D. A. & Omary, M. B. Mouse genetic background contributes to hepatocyte susceptibility to Fas-mediated apoptosis. Mol. Biol. Cell 27, 3005–3012 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  77. Bai, L. & Wang, S. Targeting apoptosis pathways for new cancer therapeutics. Annu. Rev. Med. 65, 139–155 (2014).

    PubMed  CAS  Google Scholar 

  78. Hernandez, C. et al. HMGB1 links chronic liver injury to progenitor responses and hepatocarcinogenesis. J. Clin. Invest. 128, 2436–2451 (2018).

    PubMed  PubMed Central  Google Scholar 

  79. Huebener, P. et al. The HMGB1/RAGE axis triggers neutrophil-mediated injury amplification following necrosis. J. Clin. Invest. 125, 539–550 (2015).

    PubMed  Google Scholar 

  80. Scaffidi, P., Misteli, T. & Bianchi, M. E. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 418, 191–195 (2002).

    CAS  PubMed  Google Scholar 

  81. Arriazu, E. et al. Signalling via the osteopontin and high mobility group box-1 axis drives the fibrogenic response to liver injury. Gut 66, 1123–1137 (2017).

    PubMed  CAS  Google Scholar 

  82. Khambu, B. et al. HMGB1 promotes ductular reaction and tumorigenesis in autophagy-deficient livers. J. Clin. Invest. 128, 2419–2435 (2018).

    PubMed  PubMed Central  Google Scholar 

  83. McDonald, B. et al. Intravascular danger signals guide neutrophils to sites of sterile inflammation. Science 330, 362–366 (2010).

    PubMed  CAS  Google Scholar 

  84. Savio, L. E. B. et al. CD39 limits P2X7 receptor inflammatory signaling and attenuates sepsis-induced liver injury. J. Hepatol. 67, 716–726 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  85. Hoque, R. et al. P2X7 receptor-mediated purinergic signaling promotes liver injury in acetaminophen hepatotoxicity in mice. Am. J. Physiol. Gastrointest. Liver Physiol. 302, G1171–G1179 (2012).

    PubMed  PubMed Central  CAS  Google Scholar 

  86. Kataoka, H., Kono, H., Patel, Z., Kimura, Y. & Rock, K. L. Evaluation of the contribution of multiple DAMPs and DAMP receptors in cell death-induced sterile inflammatory responses. PLOS One 9, e104741 (2014).

    PubMed  PubMed Central  Google Scholar 

  87. Marques, P. E. et al. Chemokines and mitochondrial products activate neutrophils to amplify organ injury during mouse acute liver failure. Hepatology 56, 1971–1982 (2012).

    PubMed  CAS  Google Scholar 

  88. Liu, M. et al. Formylpeptide receptors are critical for rapid neutrophil mobilization in host defense against Listeria monocytogenes. Sci. Rep. 2, 786 (2012).

    PubMed  PubMed Central  Google Scholar 

  89. Watanabe, A. et al. Apoptotic hepatocyte DNA inhibits hepatic stellate cell chemotaxis via toll-like receptor 9. Hepatology 46, 1509–1518 (2007).

    PubMed  CAS  Google Scholar 

  90. Luthi, A. U. et al. Suppression of interleukin-33 bioactivity through proteolysis by apoptotic caspases. Immunity 31, 84–98 (2009).

    PubMed  CAS  Google Scholar 

  91. Cayrol, C. & Girard, J. P. The IL-1-like cytokine IL-33 is inactivated after maturation by caspase-1. Proc. Natl Acad. Sci. USA 106, 9021–9026 (2009).

    PubMed  CAS  PubMed Central  Google Scholar 

  92. Rickard, J. A. et al. RIPK1 regulates RIPK3-MLKL-driven systemic inflammation and emergency hematopoiesis. Cell 157, 1175–1188 (2014).

    PubMed  CAS  Google Scholar 

  93. Rankin, A. L. et al. IL-33 induces IL-13-dependent cutaneous fibrosis. J. Immunol. 184, 1526–1535 (2010).

    PubMed  CAS  Google Scholar 

  94. Vannella, K. M. et al. Combinatorial targeting of TSLP, IL-25, and IL-33 in type 2 cytokine-driven inflammation and fibrosis. Sci Transl Med 8, 337ra65 (2016).

    PubMed  Google Scholar 

  95. McHedlidze, T. et al. Interleukin-33-dependent innate lymphoid cells mediate hepatic fibrosis. Immunity 39, 357–371 (2013).

    PubMed  PubMed Central  CAS  Google Scholar 

  96. Tan, Z. et al. Tan, Z. et al. Interleukin-33 drives hepatic fibrosis through activation of hepatic stellate cells. Cell. Mol. Immunol. 15, 388–398 (2017).

    PubMed  PubMed Central  Google Scholar 

  97. Vasseur, P. et al. Endogenous IL-33 has no effect on the progression of fibrosis during experimental steatohepatitis. Oncotarget 8, 48563–48574 (2017).

    PubMed  PubMed Central  Google Scholar 

  98. Shi, Y., Evans, J. E. & Rock, K. L. Molecular identification of a danger signal that alerts the immune system to dying cells. Nature 425, 516–521 (2003).

    PubMed  CAS  Google Scholar 

  99. Martinon, F., Petrilli, V., Mayor, A., Tardivel, A. & Tschopp, J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440, 237–241 (2006).

    PubMed  CAS  Google Scholar 

  100. Watanabe, A. et al. Inflammasome-mediated regulation of hepatic stellate cells. Am. J. Physiol. Gastrointest. Liver Physiol. 296, G1248–1257 (2009).

    PubMed  PubMed Central  CAS  Google Scholar 

  101. Labat-Moleur, F. et al. TUNEL apoptotic cell detection in tissue sections: critical evaluation and improvement. J. Histochem. Cytochem. 46, 327–334 (1998).

    PubMed  CAS  Google Scholar 

  102. Wieckowska, A. et al. In vivo assessment of liver cell apoptosis as a novel biomarker of disease severity in nonalcoholic fatty liver disease. Hepatology 44, 27–33 (2006).

    PubMed  CAS  Google Scholar 

  103. Tamimi, T. I. et al. An apoptosis panel for nonalcoholic steatohepatitis diagnosis. J. Hepatol. 54, 1224–1229 (2011).

    PubMed  PubMed Central  Google Scholar 

  104. Mazzolini, G., Sowa, J. P. & Canbay, A. Cell death mechanisms in human chronic liver diseases: a far cry from clinical applicability. Clin. Sci. 130, 2121–2138 (2016).

    CAS  Google Scholar 

  105. Wang, H. et al. Mixed lineage kinase domain-like protein MLKL causes necrotic membrane disruption upon phosphorylation by RIP3. Mol. Cell 54, 133–146 (2014).

    PubMed  CAS  Google Scholar 

  106. Gautheron, J. et al. A positive feedback loop between RIP3 and JNK controls non-alcoholic steatohepatitis. EMBO Mol. Med. 6, 1062–1074 (2014).

    PubMed  PubMed Central  CAS  Google Scholar 

  107. Roychowdhury, S., McMullen, M. R., Pisano, S. G., Liu, X. & Nagy, L. E. Absence of receptor interacting protein kinase 3 prevents ethanol-induced liver injury. Hepatology 57, 1773–1783 (2013).

    PubMed  CAS  Google Scholar 

  108. Gong, Y. N. et al. ESCRT-III acts downstream of MLKL to regulate necroptotic cell death and its consequences. Cell 169, 286–300 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  109. Yoon, S., Kovalenko, A., Bogdanov, K. & Wallach, D. MLKL, the protein that mediates necroptosis, also regulates endosomal trafficking and extracellular vesicle generation. Immunity 47, 51–65 (2017).

    PubMed  CAS  Google Scholar 

  110. Panayotova-Dimitrova, D. et al. cFLIP regulates skin homeostasis and protects against TNF-induced keratinocyte apoptosis. Cell Rep. 5, 397–408 (2013).

    PubMed  CAS  Google Scholar 

  111. Strilic, B. et al. Tumour-cell-induced endothelial cell necroptosis via death receptor 6 promotes metastasis. Nature 536, 215–218 (2016).

    PubMed  CAS  Google Scholar 

  112. de Graaf, I. A. et al. Preparation and incubation of precision-cut liver and intestinal slices for application in drug metabolism and toxicity studies. Nat. Protoc. 5, 1540–1551 (2010).

    PubMed  Google Scholar 

  113. Vasilikos, L., Spilgies, L. M., Knop, J. & Wong, W. W. Regulating the balance between necroptosis, apoptosis and inflammation by inhibitors of apoptosis proteins. Immunol. Cell Biol. 95, 160–165 (2017).

    PubMed  CAS  Google Scholar 

  114. Wu, Y. T. et al. zVAD-induced necroptosis in L929 cells depends on autocrine production of TNFalpha mediated by the PKC-MAPKs-AP-1 pathway. Cell Death Differ. 18, 26–37 (2011).

    PubMed  CAS  Google Scholar 

  115. Krenkel, O., Mossanen, J. C. & Tacke, F. Immune mechanisms in acetaminophen-induced acute liver failure. Hepatobiliary Surg. Nutr. 3, 331–343 (2014).

    PubMed  PubMed Central  Google Scholar 

  116. Schneider, A. T., Gautheron, J., Tacke, F., Vucur, M. & Luedde, T. Receptor interacting protein kinase 1 (RIPK1) in hepatocytes does not mediate murine acetaminophen toxicity. Hepatology 64, 306–308 (2016).

    PubMed  Google Scholar 

  117. Takemoto, K. et al. Necrostatin-1 protects against reactive oxygen species (ROS)-induced hepatotoxicity in acetaminophen-induced acute liver failure. FEBS Open Bio 4, 777–787 (2014).

    PubMed  PubMed Central  CAS  Google Scholar 

  118. Dara, L. et al. Receptor interacting protein kinase 1 mediates murine acetaminophen toxicity independent of the necrosome and not through necroptosis. Hepatology 62, 1847–1857 (2015).

    PubMed  CAS  Google Scholar 

  119. Deutsch, M. et al. Divergent effects of RIP1 or RIP3 blockade in murine models of acute liver injury. Cell Death Dis. 6, e1759 (2015).

    PubMed  PubMed Central  CAS  Google Scholar 

  120. Li, J. X. et al. The B-Raf(V600E) inhibitor dabrafenib selectively inhibits RIP3 and alleviates acetaminophen-induced liver injury. Cell Death Dis. 5, e1278 (2014).

    PubMed  PubMed Central  CAS  Google Scholar 

  121. Ramachandran, A. et al. Receptor interacting protein kinase 3 is a critical early mediator of acetaminophen-induced hepatocyte necrosis in mice. Hepatology 58, 2099–2108 (2013).

    PubMed  CAS  Google Scholar 

  122. Takahashi, N. et al. Necrostatin-1 analogues: critical issues on the specificity, activity and in vivo use in experimental disease models. Cell Death Dis. 3, e437 (2012).

    PubMed  PubMed Central  CAS  Google Scholar 

  123. Wang, K. Molecular mechanisms of liver injury: apoptosis or necrosis. Exp. Toxicol. Pathol. 66, 351–356 (2014).

    PubMed  CAS  Google Scholar 

  124. Friedmann Angeli, J. P. et al. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat. Cell Biol. 16, 1180–1191 (2014).

    CAS  PubMed  Google Scholar 

  125. Khan, H. A., Ahmad, M. Z., Khan, J. A. & Arshad, M. I. Crosstalk of liver immune cells and cell death mechanisms in different murine models of liver injury and its clinical relevance. Hepatobiliary Pancreat. Dis. Int. 16, 245–256 (2017).

    PubMed  PubMed Central  Google Scholar 

  126. Gunther, C. et al. The pseudokinase MLKL mediates programmed hepatocellular necrosis independently of RIPK3 during hepatitis. J. Clin. Invest. 126, 4346–4360 (2016).

    PubMed  PubMed Central  Google Scholar 

  127. Filliol, A. et al. RIPK1 protects from TNF-alpha-mediated liver damage during hepatitis. Cell Death Dis. 7, e2462 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  128. Herrmann, O. et al. IKK mediates ischemia-induced neuronal death. Nat. Med. 11, 1322–1329 (2005).

    PubMed  CAS  Google Scholar 

  129. Linkermann, A. et al. Necroptosis in immunity and ischemia-reperfusion injury. Am. J. Transplant 13, 2797–2804 (2013).

    PubMed  CAS  Google Scholar 

  130. Luedde, M. et al. RIP3, a kinase promoting necroptotic cell death, mediates adverse remodelling after myocardial infarction. Cardiovasc. Res. 103, 206–216 (2014).

    PubMed  CAS  Google Scholar 

  131. Singh, S., Osna, N. A. & Kharbanda, K. K. Treatment options for alcoholic and non-alcoholic fatty liver disease: a review. World J. Gastroenterol. 23, 6549–6570 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  132. Tsochatzis, E. A. & Newsome, P. N. Non-alcoholic fatty liver disease and the interface between primary and secondary care. Lancet Gastroenterol. Hepatol. 3, 509–517 (2018).

    PubMed  Google Scholar 

  133. Cobbina, E. & Akhlaghi, F. Non-alcoholic fatty liver disease (NAFLD) - pathogenesis, classification, and effect on drug metabolizing enzymes and transporters. Drug Metab. Rev. 49, 197–211 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  134. Diehl, A. M. & Day, C. Cause, pathogenesis, and treatment of nonalcoholic steatohepatitis. N. Engl. J. Med. 377, 2063–2072 (2017).

    PubMed  CAS  Google Scholar 

  135. Day, C. P. & James, O. F. Steatohepatitis: a tale of two “hits”? Gastroenterology 114, 842–845 (1998).

    PubMed  CAS  Google Scholar 

  136. Buzzetti, E., Pinzani, M. & Tsochatzis, E. A. The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD). Metabolism 65, 1038–1048 (2016).

    PubMed  CAS  Google Scholar 

  137. Feldstein, A. E. et al. Hepatocyte apoptosis and fas expression are prominent features of human nonalcoholic steatohepatitis. Gastroenterology 125, 437–443 (2003).

    PubMed  Google Scholar 

  138. Thapaliya, S. et al. Caspase 3 inactivation protects against hepatic cell death and ameliorates fibrogenesis in a diet-induced NASH model. Dig. Dis. Sci. 59, 1197–1206 (2014).

    PubMed  PubMed Central  CAS  Google Scholar 

  139. Alkhouri, N., Carter-Kent, C. & Feldstein, A. E. Apoptosis in nonalcoholic fatty liver disease: diagnostic and therapeutic implications. Expert Rev. Gastroenterol. Hepatol. 5, 201–212 (2011).

    PubMed  PubMed Central  Google Scholar 

  140. Witek, R. P. et al. Pan-caspase inhibitor VX-166 reduces fibrosis in an animal model of nonalcoholic steatohepatitis. Hepatology 50, 1421–1430 (2009).

    PubMed  CAS  Google Scholar 

  141. Ratziu, V. et al. A phase 2, randomized, double-blind, placebo-controlled study of GS-9450 in subjects with nonalcoholic steatohepatitis. Hepatology 55, 419–428 (2012).

    PubMed  CAS  Google Scholar 

  142. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02960204?term=NCT02960204&rank=1 (2018).

  143. Malhi, H. & Gores, G. J. Molecular mechanisms of lipotoxicity in nonalcoholic fatty liver disease. Semin. Liver Dis. 28, 360–369 (2008).

    PubMed  PubMed Central  CAS  Google Scholar 

  144. Volkmann, X. et al. Caspase activation is associated with spontaneous recovery from acute liver failure. Hepatology 47, 1624–1633 (2008).

    PubMed  CAS  Google Scholar 

  145. Kaiser, W. J. et al. RIP3 mediates the embryonic lethality of caspase-8-deficient mice. Nature 471, 368–372 (2011).

    PubMed  PubMed Central  CAS  Google Scholar 

  146. Gautheron, J. et al. The necroptosis-inducing kinase RIPK3 dampens adipose tissue inflammation and glucose intolerance. Nat. Commun. 7, 11869 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  147. Malhi, H., Bronk, S. F., Werneburg, N. W. & Gores, G. J. Free fatty acids induce JNK-dependent hepatocyte lipoapoptosis. J. Biol. Chem. 281, 12093–12101 (2006).

    PubMed  CAS  Google Scholar 

  148. Zhang, W. et al. Tumor necrosis factor-alpha accelerates apoptosis of steatotic hepatocytes from a murine model of non-alcoholic fatty liver disease. Biochem. Biophys. Res. Commun. 391, 1731–1736 (2010).

    PubMed  CAS  Google Scholar 

  149. Xiang, M. et al. Targeting hepatic TRAF1-ASK1 signaling to improve inflammation, insulin resistance, and hepatic steatosis. J. Hepatol. 64, 1365–1377 (2016).

    PubMed  CAS  Google Scholar 

  150. Wang, P. X. et al. Targeting CASP8 and FADD-like apoptosis regulator ameliorates nonalcoholic steatohepatitis in mice and nonhuman primates. Nat. Med. 23, 439–449 (2017).

    PubMed  CAS  Google Scholar 

  151. Zhang, P. et al. The deubiquitinating enzyme TNFAIP3 mediates inactivation of hepatic ASK1 and ameliorates nonalcoholic steatohepatitis. Nat. Med. 24, 84–94 (2018).

    PubMed  CAS  Google Scholar 

  152. Nakagawa, H. et al. ER stress cooperates with hypernutrition to trigger TNF-dependent spontaneous HCC development. Cancer Cell 26, 331–343 (2014).

    PubMed  PubMed Central  CAS  Google Scholar 

  153. Wang, X. et al. Hepatocyte TAZ/WWTR1 promotes inflammation and fibrosis in nonalcoholic steatohepatitis. Cell Metab. 24, 848–862 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  154. Sanyal, A. J. et al. Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis. N. Engl. J. Med. 362, 1675–1685 (2010).

    PubMed  PubMed Central  CAS  Google Scholar 

  155. Neuschwander-Tetri, B. A. et al. Farnesoid X nuclear receptor ligand obeticholic acid for non-cirrhotic, non-alcoholic steatohepatitis (FLINT): a multicentre, randomised, placebo-controlled trial. Lancet 385, 956–965 (2015).

    PubMed  CAS  Google Scholar 

  156. Benvegnu, L., Gios, M., Boccato, S. & Alberti, A. Natural history of compensated viral cirrhosis: a prospective study on the incidence and hierarchy of major complications. Gut 53, 744–749 (2004).

    PubMed  PubMed Central  CAS  Google Scholar 

  157. Wen, C. P. et al. Hepatocellular carcinoma risk prediction model for the general population: the predictive power of transaminases. J. Natl Cancer Inst. 104, 1599–1611 (2012).

    PubMed  PubMed Central  CAS  Google Scholar 

  158. Yang, H. I. et al. Risk estimation for hepatocellular carcinoma in chronic hepatitis B (REACH-B): development and validation of a predictive score. Lancet Oncol. 12, 568–574 (2011).

    PubMed  Google Scholar 

  159. Hassan, M., Watari, H., AbuAlmaaty, A., Ohba, Y. & Sakuragi, N. Apoptosis and molecular targeting therapy in cancer. Biomed. Res. Int. 2014, 150845 (2014).

    PubMed  PubMed Central  Google Scholar 

  160. Wahl, K. et al. Increased apoptosis induction in hepatocellular carcinoma by a novel tumor-targeted TRAIL fusion protein combined with bortezomib. Hepatology 57, 625–636 (2013).

    PubMed  CAS  Google Scholar 

  161. Koo, G. B. et al. Methylation-dependent loss of RIP3 expression in cancer represses programmed necrosis in response to chemotherapeutics. Cell Res. 25, 707–725 (2015).

    PubMed  PubMed Central  CAS  Google Scholar 

  162. Deng, G. L., Zeng, S. & Shen, H. Chemotherapy and target therapy for hepatocellular carcinoma: new advances and challenges. World J. Hepatol. 7, 787–798 (2015).

    PubMed  PubMed Central  Google Scholar 

  163. Linton, S. D. et al. First-in-class pan caspase inhibitor developed for the treatment of liver disease. J. Med. Chem. 48, 6779–6782 (2005).

    PubMed  CAS  Google Scholar 

  164. Valentino, K. L., Gutierrez, M., Sanchez, R., Winship, M. J. & Shapiro, D. A. First clinical trial of a novel caspase inhibitor: anti-apoptotic caspase inhibitor, IDN-6556, improves liver enzymes. Int. J. Clin. Pharmacol. Ther. 41, 441–449 (2003).

    PubMed  CAS  Google Scholar 

  165. Baskin-Bey, E. S. et al. Clinical trial of the pan-caspase inhibitor, IDN-6556, in human liver preservation injury. Am. J. Transplant 7, 218–225 (2007).

    PubMed  CAS  Google Scholar 

  166. Pockros, P. J. et al. Oral IDN-6556, an antiapoptotic caspase inhibitor, may lower aminotransferase activity in patients with chronic hepatitis C. Hepatology 46, 324–329 (2007).

    PubMed  CAS  Google Scholar 

  167. Shiffman, M. L. et al. Clinical trial: the efficacy and safety of oral PF-03491390, a pancaspase inhibitor - a randomized placebo-controlled study in patients with chronic hepatitis C. Aliment. Pharmacol. Ther. 31, 969–978 (2010).

    PubMed  CAS  Google Scholar 

  168. Szabo, G. & Petrasek, J. Inflammasome activation and function in liver disease. Nat. Rev. Gastroenterol. Hepatol. 12, 387–400 (2015).

    PubMed  CAS  Google Scholar 

  169. Lee, F. A. et al. Randomized phase II study of the X-linked Inhibitor of Apoptosis (XIAP) antisense AEG35156 in combination with sorafenib in patients with advanced Hepatocellular Carcinoma (HCC). Am. J. Clin. Oncol. 39, 609–613 (2016).

    PubMed  CAS  Google Scholar 

  170. Kopalli, S. R., Kang, T. B. & Koppula, S. Necroptosis inhibitors as therapeutic targets in inflammation mediated disorders - a review of the current literature and patents. Expert Opin. Ther. Pat. 26, 1239–1256 (2016).

    PubMed  CAS  Google Scholar 

  171. Li, D. et al. Natural product kongensin A is a non-canonical HSP90 inhibitor that blocks RIP3-dependent necroptosis. Cell Chem. Biol. 23, 257–266 (2016).

    PubMed  CAS  Google Scholar 

  172. Dai, M. C. et al. Curcumin protects against iron induced neurotoxicity in primary cortical neurons by attenuating necroptosis. Neurosci. Lett. 536, 41–46 (2013).

    PubMed  CAS  Google Scholar 

  173. Conrad, M., Angeli, J. P., Vandenabeele, P. & Stockwell, B. R. Regulated necrosis: disease relevance and therapeutic opportunities. Nat. Rev. Drug Discov. 15, 348–366 (2016).

    PubMed  CAS  PubMed Central  Google Scholar 

  174. Gujral, J. S., Knight, T. R., Farhood, A., Bajt, M. L. & Jaeschke, H. Mode of cell death after acetaminophen overdose in mice: apoptosis or oncotic necrosis? Toxicol. Sci. 67, 322–328 (2002).

    PubMed  CAS  Google Scholar 

  175. Masuichi, H. et al. Significant role of apoptosis in type-1 autoimmune hepatitis. Osaka City Med. J. 45, 61–79 (1999).

    PubMed  CAS  Google Scholar 

  176. Fox, C. K., Furtwaengler, A., Nepomuceno, R. R., Martinez, O. M. & Krams, S. M. Apoptotic pathways in primary biliary cirrhosis and autoimmune hepatitis. Liver 21, 272–279 (2001).

    PubMed  CAS  Google Scholar 

  177. Kuo, P. C. et al. Apoptosis and hepatic allograft reperfusion injury. Clin. Transplant 12, 219–223 (1998).

    PubMed  CAS  Google Scholar 

  178. Gautheron, J., Vucur, M. & Luedde, T. Necroptosis in nonalcoholic steatohepatitis. Cell. Mol. Gastroenterol. Hepatol. 1, 264–265 (2015).

    PubMed  PubMed Central  Google Scholar 

  179. Davidson, D. G. & Eastham, W. N. Acute liver necrosis following overdose of paracetamol. Br. Med. J. 2, 497–499 (1966).

    PubMed  PubMed Central  CAS  Google Scholar 

  180. Tzimas, G. N. et al. Correlation of cell necrosis and tissue calcification with ischemia/reperfusion injury after liver transplantation. Transplant Proc. 36, 1766–1768 (2004).

    PubMed  CAS  Google Scholar 

  181. Jaeschke, H., Cover, C. & Bajt, M. L. Role of caspases in acetaminophen-induced liver injury. Life Sci. 78, 1670–1676 (2006).

    PubMed  CAS  Google Scholar 

  182. Anstee, Q. M. et al. Impact of pan-caspase inhibition in animal models of established steatosis and non-alcoholic steatohepatitis. J. Hepatol. 53, 542–550 (2010).

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank A. T. Schneider for her support in designing figures and M. Vucur for critically reading the manuscript. Work in the laboratory of R.F.S. was supported by US NIH grants 5R01CA200597, 5R01CA190844, 1R01DK116620 and 5U01AA021912. Work in the laboratory of T.L. was supported by a Mildred-Scheel Endowed Professorship from the German Cancer Aid (Deutsche Krebshilfe), the German Research Foundation (DFG) (LU 1360/3-1 and SFB-TRR57/P06), the Interdisciplinary Centre for Clinical Research (IZKF) Aachen-Germany and the Ernst-Jung Foundation Hamburg.

Reviewer information

Nature Reviews Gastroenterology & Hepatology thanks M. Conrad and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to the manuscript.

Corresponding authors

Correspondence to Robert F. Schwabe or Tom Luedde.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schwabe, R.F., Luedde, T. Apoptosis and necroptosis in the liver: a matter of life and death. Nat Rev Gastroenterol Hepatol 15, 738–752 (2018). https://doi.org/10.1038/s41575-018-0065-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41575-018-0065-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing