Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Macrophages in intestinal inflammation and resolution: a potential therapeutic target in IBD

Abstract

Macrophages are the gatekeepers of intestinal immune homeostasis as they discriminate between innocuous antigens and potential pathogens to maintain oral tolerance. However, in individuals with a genetic and environmental predisposition, regulation of intestinal immunity is impaired, leading to chronic relapsing immune activation and pathologies of the gastrointestinal tract, such as IBD. As evidence suggests a causal link between defects in the resolution of intestinal inflammation and altered monocyte–macrophage differentiation in patients with IBD, macrophages have been considered as a novel potential target to develop new treatment approaches. This Review discusses the molecular and cellular mechanisms involved in the differentiation and function of intestinal macrophages in homeostasis and inflammation, and their role in resolving the inflammatory process. Understanding the molecular pathways involved in the specification of intestinal macrophages might lead to a new class of targets that promote remission in patients with IBD.

Key points

  • Intestinal macrophages have roles in maintaining tissue homeostasis, in inflammation, and especially in inducing resolution after inflammation.

  • Resolution of inflammation in general is an active process controlled by local recruitment of monocytes and accumulation of alternatively activated macrophages with proresolving capacity.

  • Resolution of intestinal inflammation and mucosal healing is a pivotal step for complete remission of IBD.

  • Findings suggest a causal link between IBD and defects in the transition of monocytes to proresolving macrophages, as exemplified by successful IBD therapies that favour alternatively activated macrophage differentiation.

  • A deeper understanding of the molecular pathways involved in the differentiation and functions of intestinal macrophages might lead to a new class of targets to promote remission in patients with IBD.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Differentiation and function of intestinal macrophages in homeostasis.
Fig. 2: Macrophages in intestinal inflammation and resolution.
Fig. 3: Alteration of macrophages in a patient with IBD.
Fig. 4: Current and future macrophage-directed IBD therapeutics.

Similar content being viewed by others

References

  1. Schett, G. & Neurath, M. F. Resolution of chronic inflammatory disease: universal and tissue-specific concepts. Nat. Commun. 9, 3261 (2018).

    PubMed  PubMed Central  Google Scholar 

  2. Hunter, P. The inflammation theory of disease. The growing realization that chronic inflammation is crucial in many diseases opens new avenues for treatment. EMBO Rep. 13, 968–970 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Garrett, W. S., Gordon, J. I. & Glimcher, L. H. Homeostasis and inflammation in the intestine. Cell 140, 859–870 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Mowat, A. M. To respond or not to respond — a personal perspective of intestinal tolerance. Nat. Rev. Immunol. 18, 405–415 (2018).

    CAS  PubMed  Google Scholar 

  5. Elliott, M. R., Koster, K. M. & Murphy, P. S. Efferocytosis signaling in the regulation of macrophage inflammatory responses. J. Immunol. 198, 1387–1394 (2017).

    CAS  PubMed  Google Scholar 

  6. Bain, C. C. & Mowat, A. M. Macrophages in intestinal homeostasis and inflammation. Immunol. Rev. 260, 102–117 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. de Souza, H. S. & Fiocchi, C. Immunopathogenesis of IBD: current state of the art. Nat. Rev. Gastroenterol. Hepatol. 13, 13–27 (2016).

    PubMed  Google Scholar 

  8. van Furth, R. et al. The mononuclear phagocyte system: a new classification of macrophages, monocytes, and their precursor cells. Bull. World Health Organ. 46, 845–852 (1972).

    PubMed  PubMed Central  Google Scholar 

  9. Jakubzick, C. et al. Minimal differentiation of classical monocytes as they survey steady-state tissues and transport antigen to lymph nodes. Immunity 39, 599–610 (2013).

    CAS  PubMed  Google Scholar 

  10. Hashimoto, D. et al. Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes. Immunity 38, 792–804 (2013).

    CAS  PubMed  Google Scholar 

  11. Yona, S. et al. Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity 38, 79–91 (2013).

    Article  CAS  PubMed  Google Scholar 

  12. Ginhoux, F. et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330, 841–845 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Hoeffel, G. et al. C-Myb+ erythro-myeloid progenitor-derived fetal monocytes give rise to adult tissue-resident macrophages. Immunity 42, 665–678 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Ginhoux, F. & Guilliams, M. Tissue-resident macrophage ontogeny and homeostasis. Immunity 44, 439–449 (2016).

    CAS  PubMed  Google Scholar 

  15. Shaw, T. N. et al. Tissue-resident macrophages in the intestine are long lived and defined by Tim-4 and CD4 expression. J. Exp. Med. 215, 1507–1518 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. De Schepper, S. et al. Self-maintaining gut macrophages are essential for intestinal homeostasis. Cell 175, 400–415 (2018).

    PubMed  Google Scholar 

  17. Bujko, A. et al. Transcriptional and functional profiling defines human small intestinal macrophage subsets. J. Exp. Med. 215, 441–458 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Guilliams, M. & Scott, C. L. Does niche competition determine the origin of tissue-resident macrophages? Nat. Rev. Immunol. 17, 451–460 (2017).

    CAS  PubMed  Google Scholar 

  19. Bain, C. C. et al. Constant replenishment from circulating monocytes maintains the macrophage pool in the intestine of adult mice. Nat. Immunol. 15, 929–937 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Bain, C. C. et al. Resident and pro-inflammatory macrophages in the colon represent alternative context-dependent fates of the same Ly6Chi monocyte precursors. Mucosal Immunol. 6, 498–510 (2013).

    CAS  PubMed  Google Scholar 

  21. Dai, X. M., Zong, X. H., Sylvestre, V. & Stanley, E. R. Incomplete restoration of colony-stimulating factor 1 (CSF-1) function in CSF-1-deficient Csf1op/Csf1op mice by transgenic expression of cell surface CSF-1. Blood 103, 1114–1123 (2004).

    CAS  PubMed  Google Scholar 

  22. Ryan, G. R. et al. Rescue of the colony-stimulating factor 1 (CSF-1)-nullizygous mouse (Csf1(op)/Csf1(op)) phenotype with a CSF-1 transgene and identification of sites of local CSF-1 synthesis. Blood 98, 74–84 (2001).

    CAS  PubMed  Google Scholar 

  23. Muller, P. A. et al. Crosstalk between muscularis macrophages and enteric neurons regulates gastrointestinal motility. Cell 158, 300–313 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. MacDonald, K. P. et al. An antibody against the colony-stimulating factor 1 receptor depletes the resident subset of monocytes and tissue- and tumor-associated macrophages but does not inhibit inflammation. Blood 116, 3955–3963 (2010).

    CAS  PubMed  Google Scholar 

  25. Arnold, I. C. et al. CD11c+ monocyte/macrophages promote chronic Helicobacter hepaticus-induced intestinal inflammation through the production of IL-23. Mucosal Immunol. 9, 352–363 (2016).

    CAS  PubMed  Google Scholar 

  26. Jung, S. et al. Analysis of fractalkine receptor CX3CR1 function by targeted deletion and green fluorescent protein reporter gene insertion. Mol. Cell. Biol. 20, 4106–4114 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Sehgal, A. et al. The role of CSF1R-dependent macrophages in control of the intestinal stem-cell niche. Nat. Commun. 9, 1272 (2018).

    PubMed  PubMed Central  Google Scholar 

  28. Schridde, A. et al. Tissue-specific differentiation of colonic macrophages requires TGFbeta receptor-mediated signaling. Mucosal Immunol. 10, 1387–1399 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Rugtveit, J. et al. Cytokine profiles differ in newly recruited and resident subsets of mucosal macrophages from inflammatory bowel disease. Gastroenterology 112, 1493–1505 (1997).

    CAS  PubMed  Google Scholar 

  30. Smythies, L. E. et al. Human intestinal macrophages display profound inflammatory anergy despite avid phagocytic and bacteriocidal activity. J. Clin. Invest. 115, 66–75 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Smythies, L. E. et al. Inflammation anergy in human intestinal macrophages is due to Smad-induced IkappaBalpha expression and NF-kappaB inactivation. J. Biol. Chem. 285, 19593–19604 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Ueda, Y. et al. Commensal microbiota induce LPS hyporesponsiveness in colonic macrophages via the production of IL-10. Int. Immunol. 22, 953–962 (2010).

    CAS  PubMed  Google Scholar 

  33. Franchi, L. et al. NLRC4-driven production of IL-1beta discriminates between pathogenic and commensal bacteria and promotes host intestinal defense. Nat. Immunol. 13, 449–456 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Maheshwari, A. et al. TGF-beta2 suppresses macrophage cytokine production and mucosal inflammatory responses in the developing intestine. Gastroenterology 140, 242–253 (2011).

    CAS  PubMed  Google Scholar 

  35. Schwarz, T. et al. T cell-derived IL-10 determines leishmaniasis disease outcome and is suppressed by a dendritic cell based vaccine. PLOS Pathog. 9, e1003476 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Zigmond, E. et al. Macrophage-restricted interleukin-10 receptor deficiency, but not IL-10 deficiency, causes severe spontaneous colitis. Immunity 40, 720–733 (2014).

    CAS  PubMed  Google Scholar 

  37. Kuhn, R., Lohler, J., Rennick, D., Rajewsky, K. & Muller, W. Interleukin-10-deficient mice develop chronic enterocolitis. Cell 75, 263–274 (1993).

    CAS  PubMed  Google Scholar 

  38. Shouval, D. S. et al. Interleukin-10 receptor signaling in innate immune cells regulates mucosal immune tolerance and anti-inflammatory macrophage function. Immunity 40, 706–719 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Girard-Madoux, M. J. et al. IL-10 control of CD11c+ myeloid cells is essential to maintain immune homeostasis in the small and large intestine. Oncotarget 7, 32015–32030 (2016).

    PubMed  PubMed Central  Google Scholar 

  40. Glocker, E. O. et al. Inflammatory bowel disease and mutations affecting the interleukin-10 receptor. N. Engl. J. Med. 361, 2033–2045 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Schenk, M., Bouchon, A., Birrer, S., Colonna, M. & Mueller, C. Macrophages expressing triggering receptor expressed on myeloid cells-1 are underrepresented in the human intestine. J. Immunol. 174, 517–524 (2005).

    CAS  PubMed  Google Scholar 

  42. Kobayashi, T. et al. IL-10 regulates Il12b expression via histone deacetylation: implications for intestinal macrophage homeostasis. J. Immunol. 189, 1792–1799 (2012).

    CAS  PubMed  Google Scholar 

  43. Simon, J. M. et al. Alterations to chromatin in intestinal macrophages link IL-10 deficiency to inappropriate inflammatory responses. Eur. J. Immunol. 46, 1912–1925 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Hirotani, T. et al. The nuclear IkappaB protein IkappaBNS selectively inhibits lipopolysaccharide-induced IL-6 production in macrophages of the colonic lamina propria. J. Immunol. 174, 3650–3657 (2005).

    CAS  PubMed  Google Scholar 

  45. Ip, W. K. E., Hoshi, N., Shouval, D. S., Snapper, S. & Medzhitov, R. Anti-inflammatory effect of IL-10 mediated by metabolic reprogramming of macrophages. Science 356, 513–519 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Hadis, U. et al. Intestinal tolerance requires gut homing and expansion of FoxP3+ regulatory T cells in the lamina propria. Immunity 34, 237–246 (2011).

    CAS  PubMed  Google Scholar 

  47. Mortha, A. et al. Microbiota-dependent crosstalk between macrophages and ILC3 promotes intestinal homeostasis. Science 343, 1249288 (2014).

    PubMed  PubMed Central  Google Scholar 

  48. Medina-Contreras, O. et al. CX3CR1 regulates intestinal macrophage homeostasis, bacterial translocation, and colitogenic Th17 responses in mice. J. Clin. Invest. 121, 4787–4795 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Kim, K. W. et al. In vivo structure/function and expression analysis of the CX3C chemokine fractalkine. Blood 118, e156–167 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Rescigno, M. et al. Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat. Immunol. 2, 361–367 (2001).

    CAS  PubMed  Google Scholar 

  51. Arques, J. L. et al. Salmonella induces flagellin- and MyD88-dependent migration of bacteria-capturing dendritic cells into the gut lumen. Gastroenterology 137, 579–587 (2009).

    PubMed  Google Scholar 

  52. Man, A. L. et al. CX3CR1+ cell-mediated Salmonella exclusion protects the intestinal mucosa during the initial stage of infection. J. Immunol. 198, 335–343 (2017).

    CAS  PubMed  Google Scholar 

  53. Leonardi, I. et al. CX3CR1+ mononuclear phagocytes control immunity to intestinal fungi. Science 359, 232–236 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Chang, P. V., Hao, L., Offermanns, S. & Medzhitov, R. The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proc. Natl Acad. Sci. USA 111, 2247–2252 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Scott, N. A. et al. Antibiotics induce sustained dysregulation of intestinal T cell immunity by perturbing macrophage homeostasis. Sci. Transl Med. 10, eaao4755 (2018).

    PubMed  PubMed Central  Google Scholar 

  56. Chng, S. H. et al. Ablating the aryl hydrocarbon receptor (AhR) in CD11c+ cells perturbs intestinal epithelium development and intestinal immunity. Sci. Rep. 6, 23820 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Ishikawa, H. et al. Effect of intestinal microbiota on the induction of regulatory CD25+ CD4+ T cells. Clin. Exp. Immunol. 153, 127–135 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Atarashi, K. et al. Induction of colonic regulatory T cells by indigenous Clostridium species. Science 331, 337–341 (2011).

    CAS  PubMed  Google Scholar 

  59. Singh, R. et al. Enhancement of the gut barrier integrity by a microbial metabolite through the Nrf2 pathway. Nat. Commun. 10, 89 (2019).

    PubMed  PubMed Central  Google Scholar 

  60. Kim, M. et al. Critical role for the microbiota in CX3CR1+ intestinal mononuclear phagocyte regulation of intestinal T cell responses. Immunity 49, 151–163 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Anitha, M., Vijay-Kumar, M., Sitaraman, S. V., Gewirtz, A. T. & Srinivasan, S. Gut microbial products regulate murine gastrointestinal motility via Toll-like receptor 4 signaling. Gastroenterology 143, 1006–1016 (2012).

    CAS  PubMed  Google Scholar 

  62. Gustafsson, B. E., Midtvedt, T. & Strandberg, K. Effects of microbial contamination on the cecum enlargement of germfree rats. Scand. J. Gastroenterol. 5, 309–314 (1970).

    CAS  PubMed  Google Scholar 

  63. Avetisyan, M. et al. Muscularis macrophage development in the absence of an enteric nervous system. Proc. Natl Acad. Sci. USA 115, 4696–4701 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Ortega-Gomez, A., Perretti, M. & Soehnlein, O. Resolution of inflammation: an integrated view. EMBO Mol. Med. 5, 661–674 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Fullerton, J. N. & Gilroy, D. W. Resolution of inflammation: a new therapeutic frontier. Nat. Rev. Drug Discov. 15, 551–567 (2016).

    CAS  PubMed  Google Scholar 

  66. Mantovani, A., Bonecchi, R. & Locati, M. Tuning inflammation and immunity by chemokine sequestration: decoys and more. Nat. Rev. Immunol. 6, 907–918 (2006).

    CAS  PubMed  Google Scholar 

  67. Fox, S., Leitch, A. E., Duffin, R., Haslett, C. & Rossi, A. G. Neutrophil apoptosis: relevance to the innate immune response and inflammatory disease. J. Innate Immun. 2, 216–227 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Lauber, K. et al. Apoptotic cells induce migration of phagocytes via caspase-3-mediated release of a lipid attraction signal. Cell 113, 717–730 (2003).

    CAS  PubMed  Google Scholar 

  69. Gude, D. R. et al. Apoptosis induces expression of sphingosine kinase 1 to release sphingosine-1-phosphate as a “come-and-get-me” signal. FASEB J. 22, 2629–2638 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Truman, L. A. et al. CX3CL1/fractalkine is released from apoptotic lymphocytes to stimulate macrophage chemotaxis. Blood 112, 5026–5036 (2008).

    CAS  PubMed  Google Scholar 

  71. Elliott, M. R. et al. Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance. Nature 461, 282–286 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Gordon, S. & Pluddemann, A. Macrophage clearance of apoptotic cells: a critical assessment. Front. Immunol. 9, 127 (2018).

    PubMed  PubMed Central  Google Scholar 

  73. A-Gonzalez, N. et al. Phagocytosis imprints heterogeneity in tissue-resident macrophages. J. Exp. Med. 214, 1281–1296 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Casanova-Acebes, M. et al. Neutrophils instruct homeostatic and pathological states in naive tissues. J. Exp. Med. 215, 2778–2795 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Cummings, R. J. et al. Different tissue phagocytes sample apoptotic cells to direct distinct homeostasis programs. Nature 539, 565–569 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Maddox, J. F. et al. Lipoxin A4 stable analogs are potent mimetics that stimulate human monocytes and THP-1 cells via a G-protein-linked lipoxin A4 receptor. J. Biol. Chem. 272, 6972–6978 (1997).

    CAS  PubMed  Google Scholar 

  77. Chiang, N. et al. The lipoxin receptor ALX: potent ligand-specific and stereoselective actions in vivo. Pharmacol. Rev. 58, 463–487 (2006).

    CAS  PubMed  Google Scholar 

  78. Godson, C. et al. Cutting edge: lipoxins rapidly stimulate nonphlogistic phagocytosis of apoptotic neutrophils by monocyte-derived macrophages. J. Immunol. 164, 1663–1667 (2000).

    CAS  PubMed  Google Scholar 

  79. Fiorucci, S. et al. A beta-oxidation-resistant lipoxin A4 analog treats hapten-induced colitis by attenuating inflammation and immune dysfunction. Proc. Natl Acad. Sci. USA 101, 15736–15741 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Gewirtz, A. T. et al. Lipoxin a4 analogs attenuate induction of intestinal epithelial proinflammatory gene expression and reduce the severity of dextran sodium sulfate-induced colitis. J. Immunol. 168, 5260–5267 (2002).

    CAS  PubMed  Google Scholar 

  81. Mangino, M. J., Brounts, L., Harms, B. & Heise, C. Lipoxin biosynthesis in inflammatory bowel disease. Prostaglandins Other Lipid Mediat. 79, 84–92 (2006).

    CAS  PubMed  Google Scholar 

  82. Sugimoto, M. A., Sousa, L. P., Pinho, V., Perretti, M. & Teixeira, M. M. Resolution of inflammation: what controls its onset? Front. Immunol. 7, 160 (2016).

    PubMed  PubMed Central  Google Scholar 

  83. Serhan, C. N., Chiang, N. & Dalli, J. The resolution code of acute inflammation: novel pro-resolving lipid mediators in resolution. Semin. Immunol. 27, 200–215 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Neurath, M. F. New targets for mucosal healing and therapy in inflammatory bowel diseases. Mucosal Immunol. 7, 6–19 (2014).

    CAS  PubMed  Google Scholar 

  85. Levy, B. D., Clish, C. B., Schmidt, B., Gronert, K. & Serhan, C. N. Lipid mediator class switching during acute inflammation: signals in resolution. Nat. Immunol. 2, 612–619 (2001).

    CAS  PubMed  Google Scholar 

  86. Vong, L., Ferraz, J. G., Panaccione, R., Beck, P. L. & Wallace, J. L. A pro-resolution mediator, prostaglandin D2, is specifically up-regulated in individuals in long-term remission from ulcerative colitis. Proc. Natl Acad. Sci. USA 107, 12023–12027 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Li, J. et al. Niacin ameliorates ulcerative colitis via prostaglandin D2-mediated D prostanoid receptor 1 activation. EMBO Mol. Med. 9, 571–588 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Kong, D. et al. PKA regulatory IIalpha subunit is essential for PGD2-mediated resolution of inflammation. J. Exp. Med. 213, 2209–2226 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Bystrom, J. et al. Resolution-phase macrophages possess a unique inflammatory phenotype that is controlled by cAMP. Blood 112, 4117–4127 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Shiraishi, H. et al. Prostaglandin E2 is a major soluble factor produced by stromal cells for preventing inflammatory cytokine production from dendritic cells. Int. Immunol. 20, 1219–1229 (2008).

    CAS  PubMed  Google Scholar 

  91. Koga, K. et al. Cyclic adenosine monophosphate suppresses the transcription of proinflammatory cytokines via the phosphorylated c-Fos protein. Immunity 30, 372–383 (2009).

    CAS  PubMed  Google Scholar 

  92. Brown, S. L. et al. Myd88-dependent positioning of Ptgs2-expressing stromal cells maintains colonic epithelial proliferation during injury. J. Clin. Invest. 117, 258–269 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Tessner, T. G., Muhale, F., Riehl, T. E., Anant, S. & Stenson, W. F. Prostaglandin E2 reduces radiation-induced epithelial apoptosis through a mechanism involving AKT activation and bax translocation. J. Clin. Invest. 114, 1676–1685 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Castellone, M. D., Teramoto, H., Williams, B. O., Druey, K. M. & Gutkind, J. S. Prostaglandin E2 promotes colon cancer cell growth through a Gs-axin-beta-catenin signaling axis. Science 310, 1504–1510 (2005).

    CAS  PubMed  Google Scholar 

  95. Chinen, T. et al. Prostaglandin E2 and SOCS1 have a role in intestinal immune tolerance. Nat. Commun. 2, 190 (2011).

    PubMed  Google Scholar 

  96. Bouma, G. & Strober, W. The immunological and genetic basis of inflammatory bowel disease. Nat. Rev. Immunol. 3, 521–533 (2003).

    CAS  PubMed  Google Scholar 

  97. Libioulle, C. et al. Novel Crohn disease locus identified by genome-wide association maps to a gene desert on 5p13.1 and modulates expression of PTGER4. PLOS Genet. 3, e58 (2007).

    PubMed  PubMed Central  Google Scholar 

  98. Dalli, J. & Serhan, C. N. Pro-resolving mediators in regulating and conferring macrophage function. Front. Immunol. 8, 1400 (2017).

    PubMed  PubMed Central  Google Scholar 

  99. Buckley, C. D., Gilroy, D. W. & Serhan, C. N. Proresolving lipid mediators and mechanisms in the resolution of acute inflammation. Immunity 40, 315–327 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Gobbetti, T. et al. Protectin D1n-3 DPA and resolvin D5n-3 DPA are effectors of intestinal protection. Proc. Natl Acad. Sci. USA 114, 3963–3968 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Bento, A. F., Claudino, R. F., Dutra, R. C., Marcon, R. & Calixto, J. B. Omega-3 fatty acid-derived mediators 17(R)-hydroxy docosahexaenoic acid, aspirin-triggered resolvin D1 and resolvin D2 prevent experimental colitis in mice. J. Immunol. 187, 1957–1969 (2011).

    CAS  PubMed  Google Scholar 

  102. Marcon, R. et al. Maresin 1, a proresolving lipid mediator derived from omega-3 polyunsaturated fatty acids, exerts protective actions in murine models of colitis. J. Immunol. 191, 4288–4298 (2013).

    CAS  PubMed  Google Scholar 

  103. Belluzzi, A. et al. Effect of an enteric-coated fish-oil preparation on relapses in Crohn’s disease. N. Engl. J. Med. 334, 1557–1560 (1996).

    CAS  PubMed  Google Scholar 

  104. Barbosa, D. S. et al. Decreased oxidative stress in patients with ulcerative colitis supplemented with fish oil omega-3 fatty acids. Nutrition 19, 837–842 (2003).

    CAS  PubMed  Google Scholar 

  105. Romano, C., Cucchiara, S., Barabino, A., Annese, V. & Sferlazzas, C. Usefulness of omega-3 fatty acid supplementation in addition to mesalazine in maintaining remission in pediatric Crohn’s disease: a double-blind, randomized, placebo-controlled study. World J. Gastroenterol. 11, 7118–7121 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Pull, S. L., Doherty, J. M., Mills, J. C., Gordon, J. I. & Stappenbeck, T. S. Activated macrophages are an adaptive element of the colonic epithelial progenitor niche necessary for regenerative responses to injury. Proc. Natl Acad. Sci. USA 102, 99–104 (2005).

    CAS  PubMed  Google Scholar 

  107. Seno, H. et al. Efficient colonic mucosal wound repair requires Trem2 signaling. Proc. Natl Acad. Sci. USA 106, 256–261 (2009).

    CAS  PubMed  Google Scholar 

  108. Leoni, G. et al. Annexin A1, formyl peptide receptor, and NOX1 orchestrate epithelial repair. J. Clin. Invest. 123, 443–454 (2013).

    CAS  PubMed  Google Scholar 

  109. Quiros, M. et al. Macrophage-derived IL-10 mediates mucosal repair by epithelial WISP-1 signaling. J. Clin. Invest. 127, 3510–3520 (2017).

    PubMed  PubMed Central  Google Scholar 

  110. Saha, S. et al. Macrophage-derived extracellular vesicle-packaged WNTs rescue intestinal stem cells and enhance survival after radiation injury. Nat. Commun. 7, 13096 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Baillie, J. K. et al. Analysis of the human monocyte-derived macrophage transcriptome and response to lipopolysaccharide provides new insights into genetic aetiology of inflammatory bowel disease. PLOS Genet. 13, e1006641 (2017).

    PubMed  PubMed Central  Google Scholar 

  112. Jostins, L. et al. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature 491, 119–124 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Schwerd, T. et al. Impaired antibacterial autophagy links granulomatous intestinal inflammation in Niemann-Pick disease type C1 and XIAP deficiency with NOD2 variants in Crohn’s disease. Gut 66, 1060–1073 (2017).

    CAS  PubMed  Google Scholar 

  114. Smith, A. M. et al. Disordered macrophage cytokine secretion underlies impaired acute inflammation and bacterial clearance in Crohn’s disease. J. Exp. Med. 206, 1883–1897 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Kamada, N. et al. Unique CD14 intestinal macrophages contribute to the pathogenesis of Crohn disease via IL-23/IFN-gamma axis. J. Clin. Invest. 118, 2269–2280 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Bernardo, D. et al. Human intestinal pro-inflammatory CD11chighCCR2+CX3CR1+ macrophages, but not their tolerogenic CD11cCCR2CX3CR1 counterparts, are expanded in inflammatory bowel disease. Mucosal Immunol. 11, 1114–1126 (2018).

    CAS  PubMed  Google Scholar 

  117. Ogino, T. et al. Increased Th17-inducing activity of CD14+ CD163 low myeloid cells in intestinal lamina propria of patients with Crohn’s disease. Gastroenterology 145, 1380–1391 (2013).

    CAS  PubMed  Google Scholar 

  118. Mazlam, M. Z. & Hodgson, H. J. Peripheral blood monocyte cytokine production and acute phase response in inflammatory bowel disease. Gut 33, 773–778 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Schwarzmaier, D., Foell, D., Weinhage, T., Varga, G. & Dabritz, J. Peripheral monocyte functions and activation in patients with quiescent Crohn’s disease. PLOS ONE 8, e62761 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Radwan, P., Radwan-Kwiatek, K., Tabarkiewicz, J., Radej, S. & Rolinski, J. Enhanced phenotypic and functional maturation of monocyte-derived dendritic cells from patients with active Crohn’s disease and ulcerative colitis. J. Physiol. Pharmacol. 61, 695–703 (2010).

    CAS  PubMed  Google Scholar 

  121. Glasser, A. L. & Darfeuille-Michaud, A. Abnormalities in the handling of intracellular bacteria in Crohn’s disease: a link between infectious etiology and host genetic susceptibility. Arch. Immunol. Ther. Exp. (Warsz.) 56, 237–244 (2008).

    CAS  Google Scholar 

  122. Dige, A. et al. Reduced numbers of mucosal DRint macrophages and increased numbers of CD103+ dendritic cells during anti-TNF-α treatment in patients with Crohn’s disease. Scand. J. Gastroenterol. 51, 692–699 (2016).

    CAS  PubMed  Google Scholar 

  123. Neurath, M. F. IL-23: a master regulator in Crohn disease. Nat. Med. 13, 26–28 (2007).

    CAS  PubMed  Google Scholar 

  124. Yen, D. et al. IL-23 is essential for T cell-mediated colitis and promotes inflammation via IL-17 and IL-6. J. Clin. Invest. 116, 1310–1316 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Duerr, R. H. et al. A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science 314, 1461–1463 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Vos, A. C. et al. Anti-tumor necrosis factor-alpha antibodies induce regulatory macrophages in an Fc region-dependent manner. Gastroenterology 140, 221–230 (2011).

    CAS  PubMed  Google Scholar 

  127. Vos, A. C. et al. Regulatory macrophages induced by infliximab are involved in healing in vivo and in vitro. Inflamm. Bowel Dis. 18, 401–408 (2012).

    PubMed  Google Scholar 

  128. Papamichael, K. et al. Role for therapeutic drug monitoring during induction therapy with TNF antagonists in IBD: evolution in the definition and management of primary nonresponse. Inflamm. Bowel Dis. 21, 182–197 (2015).

    PubMed  Google Scholar 

  129. Bantel, H. et al. Mesalazine inhibits activation of transcription factor NF-κB in inflamed mucosa of patients with ulcerative colitis. Am. J. Gastroenterol. 95, 3452–3457 (2000).

    CAS  PubMed  Google Scholar 

  130. Mowat, C. et al. Guidelines for the management of inflammatory bowel disease in adults. Gut 60, 571–607 (2011).

    PubMed  Google Scholar 

  131. Oakley, R. H. & Cidlowski, J. A. The biology of the glucocorticoid receptor: new signaling mechanisms in health and disease. J. Allergy Clin. Immunol. 132, 1033–1044 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Ehrchen, J. et al. Glucocorticoids induce differentiation of a specifically activated, anti-inflammatory subtype of human monocytes. Blood 109, 1265–1274 (2007).

    CAS  PubMed  Google Scholar 

  133. Giles, K. M. et al. Glucocorticoid augmentation of macrophage capacity for phagocytosis of apoptotic cells is associated with reduced p130Cas expression, loss of paxillin/pyk2 phosphorylation, and high levels of active Rac. J. Immunol. 167, 976–986 (2001).

    CAS  PubMed  Google Scholar 

  134. Allgayer, H. Review article: mechanisms of action of mesalazine in preventing colorectal carcinoma in inflammatory bowel disease. Aliment. Pharmacol. Ther. 18 (Suppl. 2), 10–14 (2003).

    CAS  Google Scholar 

  135. Atreya, I. et al. Designer thiopurine-analogues for optimised immunosuppression in inflammatory bowel diseases. J. Crohns Colitis 10, 1132–1143 (2016).

    PubMed  Google Scholar 

  136. Feagan, B. G. et al. A comparison of methotrexate with placebo for the maintenance of remission in Crohn’s disease. North American Crohn’s Study Group Investigators. N. Engl. J. Med. 342, 1627–1632 (2000).

    CAS  PubMed  Google Scholar 

  137. Elion, G. B. The purine path to chemotherapy. Science 244, 41–47 (1989).

    CAS  PubMed  Google Scholar 

  138. Marinkovic, G., Hamers, A. A., de Vries, C. J. & de Waard, V. 6-Mercaptopurine reduces macrophage activation and gut epithelium proliferation through inhibition of GTPase Rac1. Inflamm. Bowel Dis. 20, 1487–1495 (2014).

    PubMed  Google Scholar 

  139. Municio, C. et al. Methotrexate selectively targets human proinflammatory macrophages through a thymidylate synthase/p53 axis. Ann. Rheum. Dis. 75, 2157–2165 (2016).

    CAS  PubMed  Google Scholar 

  140. Lucas, M., Zhang, X., Prasanna, V. & Mosser, D. M. ERK activation following macrophage FcγR ligation leads to chromatin modifications at the IL-10 locus. J. Immunol. 175, 469–477 (2005).

    CAS  PubMed  Google Scholar 

  141. Pander, J. et al. Activation of tumor-promoting type 2 macrophages by EGFR-targeting antibody cetuximab. Clin. Cancer Res. 17, 5668–5673 (2011).

    CAS  PubMed  Google Scholar 

  142. Boyer, J. F. et al. Anti-TNF certolizumab pegol induces antioxidant response in human monocytes via reverse signaling. Arthritis Res. Ther. 18, 56 (2016).

    PubMed  PubMed Central  Google Scholar 

  143. Paramsothy, S., Rosenstein, A. K., Mehandru, S. & Colombel, J. F. The current state of the art for biological therapies and new small molecules in inflammatory bowel disease. Mucosal Immunol. 11, 1558–1570 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. De Vries, L. C. S., Wildenberg, M. E., De Jonge, W. J. & D’Haens, G. R. The future of janus kinase inhibitors in inflammatory bowel disease. J. Crohns Colitis 11, 885–893 (2017).

    PubMed  PubMed Central  Google Scholar 

  145. Machado, M. A. A. et al. Effectiveness and safety of tofacitinib in rheumatoid arthritis: a cohort study. Arthritis Res. Ther. 20, 60 (2018).

    PubMed  PubMed Central  Google Scholar 

  146. Sandborn, W. J. et al. Tofacitinib as induction and maintenance therapy for ulcerative colitis. N. Engl. J. Med. 376, 1723–1736 (2017).

    CAS  PubMed  Google Scholar 

  147. Panes, J. et al. Tofacitinib for induction and maintenance therapy of Crohn’s disease: results of two phase IIb randomised placebo-controlled trials. Gut 66, 1049–1059 (2017).

    CAS  PubMed  Google Scholar 

  148. Vermeire, S. et al. Clinical remission in patients with moderate-to-severe Crohn’s disease treated with filgotinib (the FITZROY study): results from a phase 2, double-blind, randomised, placebo-controlled trial. Lancet 389, 266–275 (2017).

    CAS  PubMed  Google Scholar 

  149. Pattison, M. J., Mackenzie, K. F. & Arthur, J. S. Inhibition of JAKs in macrophages increases lipopolysaccharide-induced cytokine production by blocking IL-10-mediated feedback. J. Immunol. 189, 2784–2792 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Spadaccini, M., D’Alessio, S., Peyrin-Biroulet, L. & Danese, S. PDE4 inhibition and inflammatory bowel disease: a novel therapeutic avenue. Int. J. Mol. Sci. 18, E1276 (2017).

    PubMed  Google Scholar 

  151. Mazur, M., Karczewski, J., Lodyga, M., Zaba, R. & Adamski, Z. Inhibitors of phosphodiesterase 4 (PDE 4): a new therapeutic option in the treatment of psoriasis vulgaris and psoriatic arthritis. J. Dermatolog. Treat. 26, 326–328 (2015).

    PubMed  Google Scholar 

  152. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT02289417 (2019).

  153. Danese, S. et al. Apremilast for active ulcerative colitis: a phase 2, randomised, double-blind, placebo-controlled induction study [abstract OP006]. J. Crohns Colitis 12, S004–S005 (2018).

    Google Scholar 

  154. Barrera, P. et al. Synovial macrophage depletion with clodronate-containing liposomes in rheumatoid arthritis. Arthritis Rheum. 43, 1951–1959 (2000).

    CAS  PubMed  Google Scholar 

  155. Bu, L., Gao, M., Qu, S. & Liu, D. Intraperitoneal injection of clodronate liposomes eliminates visceral adipose macrophages and blocks high-fat diet-induced weight gain and development of insulin resistance. AAPS J. 15, 1001–1011 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Piaggio, F. et al. A novel liposomal clodronate depletes tumor-associated macrophages in primary and metastatic melanoma: anti-angiogenic and anti-tumor effects. J. Control. Release 223, 165–177 (2016).

    CAS  PubMed  Google Scholar 

  157. Poh, A. R. & Ernst, M. Targeting macrophages in cancer: from bench to bedside. Front. Oncol. 8, 49 (2018).

    PubMed  PubMed Central  Google Scholar 

  158. Marra, M. et al. New self-assembly nanoparticles and stealth liposomes for the delivery of zoledronic acid: a comparative study. Biotechnol. Adv. 30, 302–309 (2012).

    CAS  PubMed  Google Scholar 

  159. Mantovani, A., Marchesi, F., Malesci, A., Laghi, L. & Allavena, P. Tumour-associated macrophages as treatment targets in oncology. Nat. Rev. Clin. Oncol. 14, 399–416 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Binnemars-Postma, K., Storm, G. & Prakash, J. Nanomedicine strategies to target tumor-associated macrophages. Int. J. Mol. Sci. 18, E979 (2017).

    PubMed  Google Scholar 

  161. Singh, Y. et al. Targeting tumor associated macrophages (TAMs) via nanocarriers. J. Control. Release 254, 92–106 (2017).

    CAS  PubMed  Google Scholar 

  162. Murray, P. J. et al. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 41, 14–20 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Mosser, D. M. & Edwards, J. P. Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol. 8, 958–969 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Shapouri-Moghaddam, A. et al. Macrophage plasticity, polarization, and function in health and disease. J. Cell. Physiol. 233, 6425–6440 (2018).

    CAS  PubMed  Google Scholar 

  165. Mantovani, A. et al. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 25, 677–686 (2004).

    CAS  PubMed  Google Scholar 

  166. Martinez, F. O., Sica, A., Mantovani, A. & Locati, M. Macrophage activation and polarization. Front. Biosci. 13, 453–461 (2008).

    CAS  PubMed  Google Scholar 

  167. Arora, S., Dev, K., Agarwal, B., Das, P. & Syed, M. A. Macrophages: their role, activation and polarization in pulmonary diseases. Immunobiology 223, 383–396 (2018).

    CAS  PubMed  Google Scholar 

  168. Biswas, S. K. & Mantovani, A. Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat. Immunol. 11, 889–896 (2010).

    CAS  PubMed  Google Scholar 

  169. Wynn, T. A. & Vannella, K. M. Macrophages in tissue repair, regeneration, and fibrosis. Immunity 44, 450–462 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Colin, S., Chinetti-Gbaguidi, G. & Staels, B. Macrophage phenotypes in atherosclerosis. Immunol. Rev. 262, 153–166 (2014).

    CAS  PubMed  Google Scholar 

  171. Ambarus, C. A. et al. Soluble immune complexes shift the TLR-induced cytokine production of distinct polarized human macrophage subsets towards IL-10. PLOS ONE 7, e35994 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Yue, Y. et al. M2b macrophages reduce early reperfusion injury after myocardial ischemia in mice: a predominant role of inhibiting apoptosis via A20. Int. J. Cardiol. 245, 228–235 (2017).

    PubMed  Google Scholar 

  173. Roszer, T. Understanding the mysterious M2 macrophage through activation markers and effector mechanisms. Mediators Inflamm. 2015, 816460 (2015).

    PubMed  PubMed Central  Google Scholar 

  174. Zizzo, G., Hilliard, B. A., Monestier, M. & Cohen, P. L. Efficient clearance of early apoptotic cells by human macrophages requires M2c polarization and MerTK induction. J. Immunol. 189, 3508–3520 (2012).

    CAS  PubMed  Google Scholar 

  175. Wang, Q. et al. Fra-1 protooncogene regulates IL-6 expression in macrophages and promotes the generation of M2d macrophages. Cell Res. 20, 701–712 (2010).

    CAS  PubMed  Google Scholar 

  176. Wu, H. et al. Tumor-associated macrophages promote angiogenesis and lymphangiogenesis of gastric cancer. J. Surg. Oncol. 106, 462–468 (2012).

    CAS  PubMed  Google Scholar 

  177. Rivollier, A., He, J., Kole, A., Valatas, V. & Kelsall, B. L. Inflammation switches the differentiation program of Ly6Chi monocytes from antiinflammatory macrophages to inflammatory dendritic cells in the colon. J. Exp. Med. 209, 139–155 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

G.M. and S.H.S. are supported by the cooperation grant VS03917N between the Research Foundation — Flanders (FWO, Belgium) and the National Research Foundation of Korea (NRF, South Korea). G.M. is also supported by an FWO grant (G.0D83.17N), a grant from the International Organization for the Study of Inflammatory Bowel Diseases (IOIBD), a grant from the European Crohn´s and Colitis Organization (ECCO) and grants from the KU Leuven Internal Funds (C12/15/016 and C14/17/097). Y.R.N. was supported by the Basic Science Research Program through the NRF, funded by the Ministry of Science, ICT and Future Planning (NRF-2017R1D1A1B04031161). S.H.S. was supported by the Promising–Pioneering Researcher Program through Seoul National University (South Korea). M.S. is supported by an FWO PhD fellowship.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Seung Hyeok Seok or Gianluca Matteoli.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Gastroenterology & Hepatology thanks M. Abreu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Na, Y.R., Stakenborg, M., Seok, S.H. et al. Macrophages in intestinal inflammation and resolution: a potential therapeutic target in IBD. Nat Rev Gastroenterol Hepatol 16, 531–543 (2019). https://doi.org/10.1038/s41575-019-0172-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41575-019-0172-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing