Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Host–microbiota interactions in inflammatory bowel disease

Abstract

The mammalian intestine is colonized by trillions of microorganisms that have co-evolved with the host in a symbiotic relationship. The presence of large numbers of symbionts near the epithelial surface of the intestine poses an enormous challenge to the host because it must avoid the activation of harmful inflammatory responses to the microorganisms while preserving its ability to mount robust immune responses to invading pathogens. In patients with inflammatory bowel disease, there is a breakdown of the multiple strategies that the immune system has evolved to promote the separation between symbiotic microorganisms and the intestinal epithelium and the effective killing of penetrant microorganisms, while suppressing the activation of inappropriate T cell responses to resident microorganisms. Understanding the complex interactions between intestinal microorganisms and the host may provide crucial insight into the pathogenesis of inflammatory bowel disease as well as new avenues to prevent and treat the disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mucosal firewalls.
Fig. 2: Breakdown of mucosal firewalls in inflammatory bowel disease.
Fig. 3: Beneficial effects of symbionts.
Fig. 4: Regulatory T cells support intestinal homeostasis.
Fig. 5: Dysbiosis in inflammatory bowel disease.
Fig. 6: Effects of microbiome-based therapeutics in inflammatory bowel disease.

Similar content being viewed by others

References

  1. Kaplan, G. G. The global burden of IBD: from 2015 to 2025. Nat. Rev. Gastroenterol. Hepatol. 12, 720–727 (2015).

    PubMed  Google Scholar 

  2. Xavier, R. J. & Podolsky, D. K. Unravelling the pathogenesis of inflammatory bowel disease. Nature 448, 427–434 (2007).

    CAS  PubMed  Google Scholar 

  3. Liu, J. Z. et al. Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations. Nat. Genet. 47, 979–986 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. McGovern, D. P., Kugathasan, S. & Cho, J. H. Genetics of inflammatory bowel diseases. Gastroenterology 149, 1163–1176.e2 (2015).

    CAS  PubMed  Google Scholar 

  5. Pickard, J. M., Zeng, M. Y., Caruso, R. & Nunez, G. Gut microbiota: role in pathogen colonization, immune responses, and inflammatory disease. Immunol. Rev. 279, 70–89 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Round, J. L. & Mazmanian, S. K. The gut microbiota shapes intestinal immune responses during health and disease. Nat. Rev. Immunol. 9, 313–323 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Eckburg, P. B. et al. Diversity of the human intestinal microbial flora. Science 308, 1635–1638 (2005).

    PubMed  PubMed Central  Google Scholar 

  8. The Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature 486, 207–214 (2012).

    PubMed Central  Google Scholar 

  9. Hooper, L. V., Littman, D. R. & Macpherson, A. J. Interactions between the microbiota and the immune system. Science 336, 1268–1273 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Littman, D. R. & Pamer, E. G. Role of the commensal microbiota in normal and pathogenic host immune responses. Cell Host Microbe 10, 311–323 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Lozupone, C. A., Stombaugh, J. I., Gordon, J. I., Jansson, J. K. & Knight, R. Diversity, stability and resilience of the human gut microbiota. Nature 489, 220–230 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Honda, K. & Littman, D. R. The microbiome in infectious disease and inflammation. Annu. Rev. Immunol. 30, 759–795 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Macpherson, A. J., Slack, E., Geuking, M. B. & McCoy, K. D. The mucosal firewalls against commensal intestinal microbes. Semin. Immunopathol. 31, 145–149 (2009).

    PubMed  Google Scholar 

  14. Belkaid, Y. & Hand, T. W. Role of the microbiota in immunity and inflammation. Cell 157, 121–141 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Arike, L., Holmen-Larsson, J. & Hansson, G. C. Intestinal Muc2 mucin O-glycosylation is affected by microbiota and regulated by differential expression of glycosyltranferases. Glycobiology 27, 318–328 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Johansson, M. E. et al. The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proc. Natl Acad. Sci. USA 105, 15064–15069 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Johansson, M. E., Larsson, J. M. & Hansson, G. C. The two mucus layers of colon are organized by the MUC2 mucin, whereas the outer layer is a legislator of host-microbial interactions. Proc. Natl Acad. Sci. USA 108 (Suppl. 1), 4659–4665 (2011).

    CAS  PubMed  Google Scholar 

  18. McGuckin, M. A., Linden, S. K., Sutton, P. & Florin, T. H. Mucin dynamics and enteric pathogens. Nat. Rev. Microbiol. 9, 265–278 (2011).

    CAS  PubMed  Google Scholar 

  19. Ayabe, T. et al. Secretion of microbicidal α-defensins by intestinal Paneth cells in response to bacteria. Nat. Immunol. 1, 113–118 (2000).

    CAS  PubMed  Google Scholar 

  20. Vaishnava, S., Behrendt, C. L., Ismail, A. S., Eckmann, L. & Hooper, L. V. Paneth cells directly sense gut commensals and maintain homeostasis at the intestinal host-microbial interface. Proc. Natl Acad. Sci. USA 105, 20858–20863 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Vaishnava, S. et al. The antibacterial lectin RegIIIγ promotes the spatial segregation of microbiota and host in the intestine. Science 334, 255–258 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Caruso, R. et al. A specific gene-microbe interaction drives the development of Crohn’s disease-like colitis in mice. Sci. Immunol. 4, eaaw4341 (2019). This paper shows that a specific pathobiont can accumulate before the development of intestinal inflammation and trigger spontaneous Crohn’s disease-like colitis in genetically susceptible mice.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Sabat, R., Ouyang, W. & Wolk, K. Therapeutic opportunities of the IL-22–IL-22R1 system. Nat. Rev. Drug Discov. 13, 21–38 (2014).

    CAS  PubMed  Google Scholar 

  24. Sonnenberg, G. F. et al. Innate lymphoid cells promote anatomical containment of lymphoid-resident commensal bacteria. Science 336, 1321–1325 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Qiu, J. et al. Group 3 innate lymphoid cells inhibit T-cell-mediated intestinal inflammation through aryl hydrocarbon receptor signaling and regulation of microflora. Immunity 39, 386–399 (2013).

    CAS  PubMed  Google Scholar 

  26. Pickard, J. M. et al. Rapid fucosylation of intestinal epithelium sustains host-commensal symbiosis in sickness. Nature 514, 638–641 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Goto, Y. et al. Innate lymphoid cells regulate intestinal epithelial cell glycosylation. Science 345, 1254009 (2014).

    PubMed  PubMed Central  Google Scholar 

  28. Pham, T. A. N. et al. Epithelial IL-22RA1-mediated fucosylation promotes intestinal colonization resistance to an opportunistic pathogen. Cell Host Microbe 16, 504–516 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Bunker, J. J. & Bendelac, A. IgA responses to microbiota. Immunity 49, 211–224 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Kubinak, J. L. & Round, J. L. Do antibodies select a healthy microbiota? Nat. Rev. Immunol. 16, 767–774 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Grootjans, J. et al. Epithelial endoplasmic reticulum stress orchestrates a protective IgA response. Science 363, 993–998 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Kubinak, J. L. et al. MyD88 signaling in T cells directs IgA-mediated control of the microbiota to promote health. Cell Host Microbe 17, 153–163 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Palm, N. W. et al. Immunoglobulin A coating identifies colitogenic bacteria in inflammatory bowel disease. Cell 158, 1000–1010 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Bunker, J. J. et al. Innate and adaptive humoral responses coat distinct commensal bacteria with immunoglobulin A. Immunity 43, 541–553 (2015). This study shows that T cell-independent IgA binds commensal bacteria in the gut but that select species that evade T cell-independent IgA can localize near the intestinal mucosa, where they elicit an alternate T cell-dependent IgA response.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Donaldson, G. P. et al. Gut microbiota utilize immunoglobulin A for mucosal colonization. Science 360, 795–800 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Haas, A. et al. Systemic antibody responses to gut commensal bacteria during chronic HIV-1 infection. Gut 60, 1506–1519 (2011).

    CAS  PubMed  Google Scholar 

  37. Sedman, P. C. et al. The prevalence of gut translocation in humans. Gastroenterology 107, 643–649 (1994).

    CAS  PubMed  Google Scholar 

  38. Zeng, M. Y. et al. Gut microbiota-induced immunoglobulin G controls systemic infection by symbiotic bacteria and pathogens. Immunity 44, 647–658 (2016). This work shows that selective gut symbionts can penetrate the mucosa and disseminate to induce IgG responses, which confer protection against systemic infection by enteric pathogens.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Kelsall, B. Recent progress in understanding the phenotype and function of intestinal dendritic cells and macrophages. Mucosal Immunol. 1, 460–469 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Smythies, L. E. et al. Human intestinal macrophages display profound inflammatory anergy despite avid phagocytic and bacteriocidal activity. J. Clin. Invest. 115, 66–75 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Manicassamy, S. et al. Activation of β-catenin in dendritic cells regulates immunity versus tolerance in the intestine. Science 329, 849–853 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Franchi, L. et al. NLRC4-driven production of IL-1β discriminates between pathogenic and commensal bacteria and promotes host intestinal defense. Nat. Immunol. 13, 449–456 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Macpherson, A. J. & Uhr, T. Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria. Science 303, 1662–1665 (2004).

    CAS  PubMed  Google Scholar 

  44. Balmer, M. L. et al. The liver may act as a firewall mediating mutualism between the host and its gut commensal microbiota. Sci. Transl Med. 6, 237ra266 (2014).

    Google Scholar 

  45. Koch, M. A. et al. Maternal IgG and IgA antibodies dampen mucosal T helper cell responses in early life. Cell 165, 827–841 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Macpherson, A. J. et al. A primitive T cell-independent mechanism of intestinal mucosal IgA responses to commensal bacteria. Science 288, 2222–2226 (2000).

    CAS  PubMed  Google Scholar 

  47. Slack, E. et al. Innate and adaptive immunity cooperate flexibly to maintain host-microbiota mutualism. Science 325, 617–620 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Arabyan, N. et al. Salmonella degrades the host glycocalyx leading to altered infection and glycan remodeling. Sci. Rep. 6, 29525 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Henderson, I. R., Czeczulin, J., Eslava, C., Noriega, F. & Nataro, J. P. Characterization of Pic, a secreted protease of Shigella flexneri and enteroaggregative Escherichia coli. Infect. Immun. 67, 5587–5596 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Mantle, M. & Rombough, C. Growth in and breakdown of purified rabbit small intestinal mucin by Yersinia enterocolitica. Infect. Immun. 61, 4131–4138 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Szabady, R. L., Yanta, J. H., Halladin, D. K., Schofield, M. J. & Welch, R. A. TagA is a secreted protease of Vibrio cholerae that specifically cleaves mucin glycoproteins. Microbiology 157, 516–525 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Guo, L. et al. Lipid A acylation and bacterial resistance against vertebrate antimicrobial peptides. Cell 95, 189–198 (1998).

    CAS  PubMed  Google Scholar 

  53. Matamouros, S. & Miller, S. I. S. Typhimurium strategies to resist killing by cationic antimicrobial peptides. Biochim. Biophys. Acta 1848, 3021–3025 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Boneca, I. G. et al. A critical role for peptidoglycan N-deacetylation in Listeria evasion from the host innate immune system. Proc. Natl Acad. Sci. USA 104, 997–1002 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. D’Costa, V. M. et al. Salmonella disrupts host endocytic trafficking by SopD2-mediated inhibition of Rab7. Cell Rep. 12, 1508–1518 (2015).

    CAS  PubMed  Google Scholar 

  56. De Souza Santos, M. & Orth, K. The role of the type III secretion system in the intracellular lifestyle of enteric pathogens. Microbiol. Spectr. https://doi.org/10.1128/microbiolspec.BAI-0008-2019 (2019).

  57. Franzon, V. L., Arondel, J. & Sansonetti, P. J. Contribution of superoxide dismutase and catalase activities to Shigella flexneri pathogenesis. Infect. Immun. 58, 529–535 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Van der Sluis, M. et al. Muc2-deficient mice spontaneously develop colitis, indicating that MUC2 is critical for colonic protection. Gastroenterology 131, 117–129 (2006).

    PubMed  Google Scholar 

  59. Johansson, M. E. et al. Bacteria penetrate the normally impenetrable inner colon mucus layer in both murine colitis models and patients with ulcerative colitis. Gut 63, 281–291 (2014).

    CAS  PubMed  Google Scholar 

  60. Van Klinken, B. J.-W., Van der Wal, J.-W. G., Einerhand, A., Buller, H. & Dekker, J. Sulphation and secretion of the predominant secretory human colonic mucin MUC2 in ulcerative colitis. Gut 44, 387–393 (1999).

    PubMed  PubMed Central  Google Scholar 

  61. Larsson, J. M. et al. Altered O-glycosylation profile of MUC2 mucin occurs in active ulcerative colitis and is associated with increased inflammation. Inflamm. Bowel Dis. 17, 2299–2307 (2011).

    PubMed  Google Scholar 

  62. McGovern, D. P. et al. Fucosyltransferase 2 (FUT2) non-secretor status is associated with Crohn’s disease. Hum. Mol. Genet. 19, 3468–3476 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Tong, M. et al. Reprograming of gut microbiome energy metabolism by the FUT2 Crohn’s disease risk polymorphism. ISME J. 8, 2193–2206 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Ogura, Y. et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature 411, 603–606 (2001).

    CAS  PubMed  Google Scholar 

  65. Hugot, J. P. et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature 411, 599–603 (2001).

    CAS  PubMed  Google Scholar 

  66. Ogura, Y. et al. Expression of NOD2 in Paneth cells: a possible link to Crohn’s ileitis. Gut 52, 1591–1597 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Kobayashi, K. S. et al. Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract. Science 307, 731–734 (2005).

    CAS  PubMed  Google Scholar 

  68. Wilson, C. L. et al. Regulation of intestinal α-defensin activation by the metalloproteinase matrilysin in innate host defense. Science 286, 113–117 (1999).

    CAS  PubMed  Google Scholar 

  69. Cadwell, K. et al. A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells. Nature 456, 259–263 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Kaser, A. et al. XBP1 links ER stress to intestinal inflammation and confers genetic risk for human inflammatory bowel disease. Cell 134, 743–756 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Adolph, T. E. et al. Paneth cells as a site of origin for intestinal inflammation. Nature 503, 272–276 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Siakavellas, S. I. & Bamias, G. Tumor necrosis factor-like cytokine TL1A and its receptors DR3 and DcR3: important new factors in mucosal homeostasis and inflammation. Inflamm. Bowel Dis. 21, 2441–2452 (2015).

    PubMed  Google Scholar 

  73. Levine, B. & Kroemer, G. Autophagy in the pathogenesis of disease. Cell 132, 27–42 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Travassos, L. H. et al. Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry. Nat. Immunol. 11, 55–62 (2010).

    CAS  PubMed  Google Scholar 

  75. Homer, C. R., Richmond, A. L., Rebert, N. A., Achkar, J. P. & McDonald, C. ATG16L1 and NOD2 interact in an autophagy-dependent antibacterial pathway implicated in Crohn’s disease pathogenesis. Gastroenterology 139, 1630–1641 (2010).

    CAS  PubMed  Google Scholar 

  76. Rioux, J. D. et al. Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis. Nat. Genet. 39, 596–604 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Hampe, J. et al. A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1. Nat. Genet. 39, 207–211 (2007).

    CAS  PubMed  Google Scholar 

  78. Lapaquette, P., Glasser, A. L., Huett, A., Xavier, R. J. & Darfeuille-Michaud, A. Crohn’s disease-associated adherent-invasive E. coli are selectively favoured by impaired autophagy to replicate intracellularly. Cell. Microbiol. 12, 99–113 (2010).

    CAS  PubMed  Google Scholar 

  79. Brest, P. et al. A synonymous variant in IRGM alters a binding site for miR-196 and causes deregulation of IRGM-dependent xenophagy in Crohn’s disease. Nat. Genet. 43, 242–245 (2011).

    CAS  PubMed  Google Scholar 

  80. Kelsen, J. R., Baldassano, R. N., Artis, D. & Sonnenberg, G. F. Maintaining intestinal health: the genetics and immunology of very early onset inflammatory bowel disease. Cell. Mol. Gastroenterol. Hepatol. 1, 462–476 (2015).

    PubMed  PubMed Central  Google Scholar 

  81. Uhlig, H. H. et al. The diagnostic approach to monogenic very early onset inflammatory bowel disease. Gastroenterology 147, 990–1007.e3 (2014).

    PubMed  Google Scholar 

  82. Dhillon, S. S. et al. Variants in nicotinamide adenine dinucleotide phosphate oxidase complex components determine susceptibility to very early onset inflammatory bowel disease. Gastroenterology 147, 680–689.e2 (2014).

    CAS  PubMed  Google Scholar 

  83. Muise, A. M. et al. NADPH oxidase complex and IBD candidate gene studies: identification of a rare variant in NCF2 that results in reduced binding to RAC2. Gut 61, 1028–1035 (2012).

    CAS  PubMed  Google Scholar 

  84. Schappi, M. G. et al. The nature of colitis in chronic granulomatous disease. J. Pediatr. Gastroenterol. Nutr. 36, 623–631 (2003).

    PubMed  Google Scholar 

  85. Marciano, B. E. et al. Gastrointestinal involvement in chronic granulomatous disease. Pediatrics 114, 462–468 (2004).

    PubMed  Google Scholar 

  86. Ivanov, I. I. et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139, 485–498 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Atarashi, K. et al. Th17 cell induction by adhesion of microbes to intestinal epithelial cells. Cell 163, 367–380 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Sano, T. et al. An IL-23R/IL-22 circuit regulates epithelial serum amyloid A to promote local effector Th17 responses. Cell 164, 324 (2016).

    CAS  PubMed  Google Scholar 

  89. Gaboriau-Routhiau, V. et al. The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity 31, 677–689 (2009).

    CAS  PubMed  Google Scholar 

  90. Yang, Y. et al. Focused specificity of intestinal TH17 cells towards commensal bacterial antigens. Nature 510, 152–156 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Ansaldo, E. et al. Akkermansia muciniphila induces intestinal adaptive immune responses during homeostasis. Science 364, 1179–1184 (2019). This paper shows that A. muciniphila-specific T cells differentiate into T follicular helper cells to generate homeostatic IgG1 in gnotobiotic animals but can also adopt multiple T H cell lineages in mice with a complex microbiota.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Weiss, J. M. et al. Neuropilin 1 is expressed on thymus-derived natural regulatory T cells, but not mucosa-generated induced Foxp3+ T reg cells. J. Exp. Med. 209, 1723–1742 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Lathrop, S. K. et al. Peripheral education of the immune system by colonic commensal microbiota. Nature 478, 250–254 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Geuking, M. B. et al. Intestinal bacterial colonization induces mutualistic regulatory T cell responses. Immunity 34, 794–806 (2011).

    CAS  PubMed  Google Scholar 

  95. Kuhn, R., Lohler, J., Rennick, D., Rajewsky, K. & Muller, W. Interleukin-10-deficient mice develop chronic enterocolitis. Cell 75, 263–274 (1993).

    CAS  PubMed  Google Scholar 

  96. Sellon, R. K. et al. Resident enteric bacteria are necessary for development of spontaneous colitis and immune system activation in interleukin-10-deficient mice. Infect. Immun. 66, 5224–5231 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Li, M. O., Wan, Y. Y., Sanjabi, S., Robertson, A. K. & Flavell, R. A. Transforming growth factor-β regulation of immune responses. Annu. Rev. Immunol. 24, 99–146 (2006).

    CAS  PubMed  Google Scholar 

  98. Travis, M. A. et al. Loss of integrin αvβ8 on dendritic cells causes autoimmunity and colitis in mice. Nature 449, 361–365 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Glocker, E. O. et al. Inflammatory bowel disease and mutations affecting the interleukin-10 receptor. N. Engl. J. Med. 361, 2033–2045 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Bennett, C. L. et al. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat. Genet. 27, 20–21 (2001).

    CAS  PubMed  Google Scholar 

  101. Brunkow, M. E. et al. Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat. Genet. 27, 68–73 (2001).

    CAS  PubMed  Google Scholar 

  102. Mottet, C., Uhlig, H. H. & Powrie, F. Cutting edge: cure of colitis by CD4+CD25+ regulatory T cells. J. Immunol. 170, 3939–3943 (2003).

    CAS  PubMed  Google Scholar 

  103. Josefowicz, S. Z. et al. Extrathymically generated regulatory T cells control mucosal TH2 inflammation. Nature 482, 395–399 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Atarashi, K. et al. Induction of colonic regulatory T cells by indigenous Clostridium species. Science 331, 337–341 (2011).

    CAS  PubMed  Google Scholar 

  105. Round, J. L. & Mazmanian, S. K. Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc. Natl Acad. Sci. USA 107, 12204–12209 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Atarashi, K. et al. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature 500, 232–236 (2013).

    CAS  PubMed  Google Scholar 

  107. Benson, M. J., Pino-Lagos, K., Rosemblatt, M. & Noelle, R. J. All-trans retinoic acid mediates enhanced T reg cell growth, differentiation, and gut homing in the face of high levels of co-stimulation. J. Exp. Med. 204, 1765–1774 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Mucida, D. et al. Retinoic acid can directly promote TGF-β-mediated Foxp3+ Treg cell conversion of naive T cells. Immunity 30, 471–472; author reply 472–473 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Mortha, A. et al. Microbiota-dependent crosstalk between macrophages and ILC3 promotes intestinal homeostasis. Science 343, 1249288 (2014).

    PubMed  PubMed Central  Google Scholar 

  110. Smith, P. M. et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 341, 569–573 (2013).

    CAS  PubMed  Google Scholar 

  111. Arpaia, N. et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 504, 451–455 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Furusawa, Y. et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504, 446–450 (2013).

    CAS  PubMed  Google Scholar 

  113. Sefik, E. et al. Mucosal immunology. Individual intestinal symbionts induce a distinct population of RORγ+ regulatory T cells. Science 349, 993–997 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Ohnmacht, C. et al. Mucosal immunology. The microbiota regulates type 2 immunity through RORγt+ T cells. Science 349, 989–993 (2015).

    CAS  PubMed  Google Scholar 

  115. Britton, G. J. et al. Microbiotas from humans with inflammatory bowel disease alter the balance of gut Th17 and RORγt+ regulatory T cells and exacerbate colitis in mice. Immunity 50, 212–224.e4 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Sokol, H. et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc. Natl Acad. Sci. USA 105, 16731–16736 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Frank, D. N. et al. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc. Natl Acad. Sci. USA 104, 13780–13785 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Gaudier, E. et al. Butyrate specifically modulates MUC gene expression in intestinal epithelial goblet cells deprived of glucose. Am. J. Physiol. Gastrointest. Liver Physiol. 287, G1168–G1174 (2004).

    CAS  PubMed  Google Scholar 

  119. Wlodarska, M. et al. Indoleacrylic acid produced by commensal Peptostreptococcus species suppresses inflammation. Cell Host Microbe 22, 25–37.e6 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Lamas, B. et al. CARD9 impacts colitis by altering gut microbiota metabolism of tryptophan into aryl hydrocarbon receptor ligands. Nat. Med. 22, 598–605 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Rutgeerts, P. et al. Effect of faecal stream diversion on recurrence of Crohn’s disease in the neoterminal ileum. Lancet 338, 771–774 (1991).

    CAS  PubMed  Google Scholar 

  122. D’Haens, G. R. et al. Early lesions of recurrent Crohn’s disease caused by infusion of intestinal contents in excluded ileum. Gastroenterology 114, 262–267 (1998).

    CAS  PubMed  Google Scholar 

  123. Thia, K. T. et al. Ciprofloxacin or metronidazole for the treatment of perianal fistulas in patients with Crohn’s disease: a randomized, double-blind, placebo-controlled pilot study. Inflamm. Bowel Dis. 15, 17–24 (2009).

    PubMed  Google Scholar 

  124. Prantera, C. et al. Rifaximin-extended intestinal release induces remission in patients with moderately active Crohn’s disease. Gastroenterology 142, 473–481.e4 (2012).

    CAS  PubMed  Google Scholar 

  125. Garrett, W. S. et al. Communicable ulcerative colitis induced by T-bet deficiency in the innate immune system. Cell 131, 33–45 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Schaubeck, M. et al. Dysbiotic gut microbiota causes transmissible Crohn’s disease-like ileitis independent of failure in antimicrobial defence. Gut 65, 225–237 (2016).

    CAS  PubMed  Google Scholar 

  127. Couturier-Maillard, A. et al. NOD2-mediated dysbiosis predisposes mice to transmissible colitis and colorectal cancer. J. Clin. Invest. 123, 700–711 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Dianda, L. et al. T cell receptor-alpha beta-deficient mice fail to develop colitis in the absence of a microbial environment. Am. J. Pathol. 150, 91–97 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Taurog, J. D. et al. The germfree state prevents development of gut and joint inflammatory disease in HLA-B27 transgenic rats. J. Exp. Med. 180, 2359–2364 (1994).

    CAS  PubMed  Google Scholar 

  130. Rath, H. C. et al. Normal luminal bacteria, especially Bacteroides species, mediate chronic colitis, gastritis, and arthritis in HLA-B27/human beta2 microglobulin transgenic rats. J. Clin. Invest. 98, 945–953 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Barnes, S. L. et al. Resistin-like molecule β (RELMβ/FIZZ2) is highly expressed in the ileum of SAMP1/YitFc mice and is associated with initiation of ileitis. J. Immunol. 179, 7012–7020 (2007).

    CAS  PubMed  Google Scholar 

  132. Dalal, S. R. & Chang, E. B. The microbial basis of inflammatory bowel diseases. J. Clin. Invest. 124, 4190–4196 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Swidsinski, A., Weber, J., Loening-Baucke, V., Hale, L. P. & Lochs, H. Spatial organization and composition of the mucosal flora in patients with inflammatory bowel disease. J. Clin. Microbiol. 43, 3380–3389 (2005).

    PubMed  PubMed Central  Google Scholar 

  134. Yilmaz, B. et al. Microbial network disturbances in relapsing refractory Crohn’s disease. Nat. Med. 25, 323–336 (2019). This work shows that, in patients with Crohn’s disease, microbiota networks are related to long-term disease type and severity, the extent and localization of the inflamed segments, and responsiveness to therapy.

    CAS  PubMed  Google Scholar 

  135. Gophna, U., Sommerfeld, K., Gophna, S., Doolittle, W. F. & Veldhuyzen van Zanten, S. J. O. Differences between tissue-associated intestinal microfloras of patients with Crohn’s disease and ulcerative colitis. J. Clin. Microbiol. 44, 4136–4141 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Willing, B. P. et al. A pyrosequencing study in twins shows that gastrointestinal microbial profiles vary with inflammatory bowel disease phenotypes. Gastroenterology 139, 1844–1854.e1 (2010).

    PubMed  Google Scholar 

  137. Lepage, P. et al. Twin study indicates loss of interaction between microbiota and mucosa of patients with ulcerative colitis. Gastroenterology 141, 227–236 (2011).

    PubMed  Google Scholar 

  138. Gevers, D. et al. The treatment-naive microbiome in new-onset Crohn’s disease. Cell Host Microbe 15, 382–392 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Franzosa, E. A. et al. Gut microbiome structure and metabolic activity in inflammatory bowel disease. Nat. Microbiol. 4, 293–305 (2019). This paper reports metagenomic and metabolomic profiling of cross-sectional stool samples from IBD cohorts to identify associations between intestinal bacteria and metabolites that can predict IBD status.

    CAS  PubMed  Google Scholar 

  140. Ott, S. J. et al. Fungi and inflammatory bowel diseases: alterations of composition and diversity. Scand. J. Gastroenterol. 43, 831–841 (2008).

    CAS  PubMed  Google Scholar 

  141. Li, Q. et al. Dysbiosis of gut fungal microbiota is associated with mucosal inflammation in Crohn’s disease. J. Clin. Gastroenterol. 48, 513–523 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Sokol, H. et al. Fungal microbiota dysbiosis in IBD. Gut 66, 1039–1048 (2017).

    CAS  PubMed  Google Scholar 

  143. Lewis, J. D. et al. Inflammation, antibiotics, and diet as environmental stressors of the gut microbiome in pediatric Crohn’s disease. Cell Host Microbe 18, 489–500 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Iliev, I. D. et al. Interactions between commensal fungi and the C-type lectin receptor Dectin-1 influence colitis. Science 336, 1314–1317 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. McGovern, D. P. et al. Genome-wide association identifies multiple ulcerative colitis susceptibility loci. Nat. Genet. 42, 332–337 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Sokol, H. et al. Card9 mediates intestinal epithelial cell restitution, T-helper 17 responses, and control of bacterial infection in mice. Gastroenterology 145, 591–601.e3 (2013).

    CAS  PubMed  Google Scholar 

  147. Cadwell, K. et al. Virus-plus-susceptibility gene interaction determines Crohn’s disease gene Atg16L1 phenotypes in intestine. Cell 141, 1135–1145 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Norman, J. M. et al. Disease-specific alterations in the enteric virome in inflammatory bowel disease. Cell 160, 447–460 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Hughes, E. R. et al. Microbial respiration and formate oxidation as metabolic signatures of inflammation-associated dysbiosis. Cell Host Microbe 21, 208–219 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Lupp, C. et al. Host-mediated inflammation disrupts the intestinal microbiota and promotes the overgrowth of Enterobacteriaceae. Cell Host Microbe 2, 119–129 (2007).

    CAS  PubMed  Google Scholar 

  151. Litvak, Y., Byndloss, M. X., Tsolis, R. M. & Baumler, A. J. Dysbiotic proteobacteria expansion: a microbial signature of epithelial dysfunction. Curr. Opin. Microbiol. 39, 1–6 (2017).

    CAS  PubMed  Google Scholar 

  152. Loy, A. et al. Lifestyle and horizontal gene transfer-mediated evolution of Mucispirillum schaedleri, a core member of the murine gut microbiota. mSystems 2, e00171–16 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Fox, J. G., Ge, Z., Whary, M. T., Erdman, S. E. & Horwitz, B. H. Helicobacter hepaticus infection in mice: models for understanding lower bowel inflammation and cancer. Mucosal Immunol. 4, 22–30 (2011).

    CAS  PubMed  Google Scholar 

  154. Faith, J. J., Ahern, P. P., Ridaura, V. K., Cheng, J. & Gordon, J. I. Identifying gut microbe-host phenotype relationships using combinatorial communities in gnotobiotic mice. Sci. Transl Med. 6, 220ra211 (2014).

    Google Scholar 

  155. Barnich, N. et al. CEACAM6 acts as a receptor for adherent-invasive E. coli, supporting ileal mucosa colonization in Crohn disease. J. Clin. Invest. 117, 1566–1574 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Macpherson, A., Khoo, U. Y., Forgacs, I., Philpott-Howard, J. & Bjarnason, I. Mucosal antibodies in inflammatory bowel disease are directed against intestinal bacteria. Gut 38, 365–375 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Ferrante, M. et al. New serological markers in inflammatory bowel disease are associated with complicated disease behaviour. Gut 56, 1394–1403 (2007).

    PubMed  PubMed Central  Google Scholar 

  158. Benckert, J. et al. The majority of intestinal IgA+ and IgG+ plasmablasts in the human gut are antigen-specific. J. Clin. Invest. 121, 1946–1955 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Pirzer, U., Schonhaar, A., Fleischer, B., Hermann, E. & Meyer zum Buschenfelde, K. H. Reactivity of infiltrating T lymphocytes with microbial antigens in Crohn’s disease. Lancet 338, 1238–1239 (1991).

    CAS  PubMed  Google Scholar 

  160. Duchmann, R. et al. Tolerance exists towards resident intestinal flora but is broken in active inflammatory bowel disease (IBD). Clin. Exp. Immunol. 102, 448–455 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Duchmann, R. et al. T cell specificity and cross reactivity towards enterobacteria, Bacteroides, Bifidobacterium, and antigens from resident intestinal flora in humans. Gut 44, 812–818 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Hegazy, A. N. et al. Circulating and tissue-resident CD4+ T cells with reactivity to intestinal microbiota are abundant in healthy individuals and function is altered during inflammation. Gastroenterology 153, 1320–1337.e16 (2017). This study reports the presence of microbiota-reactive memory CD4 + T cells with a diverse TCR Vβ repertoire in the blood and intestinal mucosa of both patients with IBD and healthy individuals.

    CAS  PubMed  Google Scholar 

  163. Cong, Y. et al. CD4+ T cells reactive to enteric bacterial antigens in spontaneously colitic C3H/HeJBir mice: increased T helper cell type 1 response and ability to transfer disease. J. Exp. Med. 187, 855–864 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Iqbal, N. et al. T helper 1 and T helper 2 cells are pathogenic in an antigen-specific model of colitis. J. Exp. Med. 195, 71–84 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Kullberg, M. C. et al. Induction of colitis by a CD4+ T cell clone specific for a bacterial epitope. Proc. Natl Acad. Sci. USA 100, 15830–15835 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Lodes, M. J. et al. Bacterial flagellin is a dominant antigen in Crohn disease. J. Clin. Invest. 113, 1296–1306 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Kim, S. C. et al. Variable phenotypes of enterocolitis in interleukin 10-deficient mice monoassociated with two different commensal bacteria. Gastroenterology 128, 891–906 (2005).

    CAS  PubMed  Google Scholar 

  168. Kullberg, M. C. et al. Helicobacter hepaticus triggers colitis in specific-pathogen-free interleukin-10 (IL-10)-deficient mice through an IL-12- and gamma interferon-dependent mechanism. Infect. Immun. 66, 5157–5166 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Xu, M. et al. c-MAF-dependent regulatory T cells mediate immunological tolerance to a gut pathobiont. Nature 554, 373–377 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Chai, J. N. et al. Helicobacter species are potent drivers of colonic T cell responses in homeostasis and inflammation. Sci. Immunol. 2, aal5068 (2017). References 169 and 170 show that Helicobacter species drive inducible T reg cell differentiation in the colon during homeostasis but the same bacteria also induce pathobiont-specific colitic CD4 + T H cells in the absence of T reg cells.

    Google Scholar 

  171. Chiaranunt, P., Tometich, J. T., Ji, J. & Hand, T. W. T cell proliferation and colitis are initiated by defined intestinal microbes. J. Immunol. 201, 243–250 (2018).

    CAS  PubMed  Google Scholar 

  172. Hand, T. W. et al. Acute gastrointestinal infection induces long-lived microbiota-specific T cell responses. Science 337, 1553–1556 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Cong, Y., Feng, T., Fujihashi, K., Schoeb, T. R. & Elson, C. O. A dominant, coordinated T regulatory cell-IgA response to the intestinal microbiota. Proc. Natl Acad. Sci. USA 106, 19256–19261 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Josefowicz, S. Z., Lu, L. F. & Rudensky, A. Y. Regulatory T cells: mechanisms of differentiation and function. Annu. Rev. Immunol. 30, 531–564 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Liu, Z. et al. Immune homeostasis enforced by co-localized effector and regulatory T cells. Nature 528, 225–230 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. van Nood, E. et al. Duodenal infusion of donor feces for recurrent Clostridium difficile. N. Engl. J. Med. 368, 407–415 (2013).

    PubMed  Google Scholar 

  177. Paramsothy, S. et al. Faecal microbiota transplantation for inflammatory bowel disease: a systematic review and meta-analysis. J. Crohns Colitis 11, 1180–1199 (2017).

    PubMed  Google Scholar 

  178. Levy, A. N. & Allegretti, J. R. Insights into the role of fecal microbiota transplantation for the treatment of inflammatory bowel disease. Therap. Adv. Gastroenterol. 12, 1756284819836893 (2019).

    PubMed  PubMed Central  Google Scholar 

  179. Rossen, N. G. et al. Findings from a randomized controlled trial of fecal transplantation for patients with ulcerative colitis. Gastroenterology 149, 110–118.e4 (2015).

    PubMed  Google Scholar 

  180. Suskind, D. L. et al. Fecal microbial transplant effect on clinical outcomes and fecal microbiome in active Crohn’s disease. Inflamm. Bowel Dis. 21, 556–563 (2015).

    PubMed  Google Scholar 

  181. Vaughn, B. P. et al. Increased intestinal microbial diversity following fecal microbiota transplant for active Crohn’s disease. Inflamm. Bowel Dis. 22, 2182–2190 (2016).

    PubMed  Google Scholar 

  182. Ledder, O. & Turner, D. Antibiotics in IBD: still a role in the biological era? Inflamm. Bowel Dis. 24, 1676–1688 (2018).

    PubMed  Google Scholar 

  183. Khan, K. J. et al. Antibiotic therapy in inflammatory bowel disease: a systematic review and meta-analysis. Am. J. Gastroenterol. 106, 661–673 (2011).

    CAS  PubMed  Google Scholar 

  184. Wang, S. L., Wang, Z. R. & Yang, C. Q. Meta-analysis of broad-spectrum antibiotic therapy in patients with active inflammatory bowel disease. Exp. Ther. Med. 4, 1051–1056 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Ford, A. C. et al. Efficacy of prebiotics, probiotics, and synbiotics in irritable bowel syndrome and chronic idiopathic constipation: systematic review and meta-analysis. Am. J. Gastroenterol. 109, 1547–1561 (2014).

    PubMed  Google Scholar 

  186. Kruis, W. et al. Maintaining remission of ulcerative colitis with the probiotic Escherichia coli Nissle 1917 is as effective as with standard mesalazine. Gut 53, 1617–1623 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Sassone-Corsi, M. et al. Microcins mediate competition among Enterobacteriaceae in the inflamed gut. Nature 540, 280–283 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Kristensen, N. B. et al. Alterations in fecal microbiota composition by probiotic supplementation in healthy adults: a systematic review of randomized controlled trials. Genome Med. 8, 52 (2016).

    PubMed  PubMed Central  Google Scholar 

  189. Mills, J. P., Rao, K. & Young, V. B. Probiotics for prevention of Clostridium difficile infection. Curr. Opin. Gastroenterol. 34, 3–10 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Steidler, L. et al. Treatment of murine colitis by Lactococcus lactis secreting interleukin-10. Science 289, 1352–1355 (2000).

    CAS  PubMed  Google Scholar 

  191. Braat, H. et al. A phase I trial with transgenic bacteria expressing interleukin-10 in Crohn’s disease. Clin. Gastroenterol. Hepatol. 4, 754–759 (2006).

    CAS  PubMed  Google Scholar 

  192. Liu, S., Li, Y., Deng, B. & Xu, Z. Recombinant Lactococcus lactis expressing porcine insulin-like growth factor I ameliorates DSS-induced colitis in mice. BMC Biotechnol. 16, 25 (2016).

    PubMed  PubMed Central  Google Scholar 

  193. Shigemori, S. et al. Oral delivery of Lactococcus lactis that secretes bioactive heme oxygenase-1 alleviates development of acute colitis in mice. Microb. Cell Fact. 14, 189 (2015).

    PubMed  PubMed Central  Google Scholar 

  194. Bermudez-Humaran, L. G. et al. Serine protease inhibitors protect better than IL-10 and TGF-β anti-inflammatory cytokines against mouse colitis when delivered by recombinant lactococci. Microb. Cell Fact. 14, 26 (2015).

    PubMed  PubMed Central  Google Scholar 

  195. Wang, X., Wong, K., Ouyang, W. & Rutz, S. Targeting IL-10 family cytokines for the treatment of human diseases. Cold Spring Harb. Perspect. Biol. 11, a028548 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Zhu, W. et al. Precision editing of the gut microbiota ameliorates colitis. Nature 553, 208–211 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Lee, D. et al. Diet in the pathogenesis and treatment of inflammatory bowel diseases. Gastroenterology 148, 1087–1106 (2015).

    CAS  PubMed  Google Scholar 

  198. Lee, D. et al. Comparative effectiveness of nutritional and biological therapy in North American children with active Crohn’s disease. Inflamm. Bowel Dis. 21, 1786–1793 (2015).

    PubMed  Google Scholar 

  199. Borrelli, O. et al. Polymeric diet alone versus corticosteroids in the treatment of active pediatric Crohn’s disease: a randomized controlled open-label trial. Clin. Gastroenterol. Hepatol. 4, 744–753 (2006).

    PubMed  Google Scholar 

  200. Grover, Z., Muir, R. & Lewindon, P. Exclusive enteral nutrition induces early clinical, mucosal and transmural remission in paediatric Crohn’s disease. J. Gastroenterol. 49, 638–645 (2014).

    CAS  PubMed  Google Scholar 

  201. Lewis, J. D. et al. Inflammation, antibiotics, and diet as environmental stressors of the gut microbiome in pediatric Crohn’s disease. Cell Host Microbe 22, 247 (2017).

    CAS  PubMed  Google Scholar 

  202. Llewellyn, S. R. et al. Interactions between diet and the intestinal microbiota alter intestinal permeability and colitis severity in mice. Gastroenterology 154, 1037–1046.e2 (2018).

    PubMed  Google Scholar 

  203. Anderson, C. A. et al. Meta-analysis identifies 29 additional ulcerative colitis risk loci, increasing the number of confirmed associations to 47. Nat. Genet. 43, 246–252 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  204. Franke, A. et al. Genome-wide meta-analysis increases to 71 the number of confirmed Crohn’s disease susceptibility loci. Nat. Genet. 42, 1118–1125 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  205. Bouma, G. & Strober, W. The immunological and genetic basis of inflammatory bowel disease. Nat. Rev. Immunol. 3, 521–533 (2003).

    CAS  PubMed  Google Scholar 

  206. Baumgart, D. C. & Sandborn, W. J. Crohn’s disease. Lancet 380, 1590–1605 (2012).

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors apologize to colleagues whose work was not cited or was cited through other review articles because of space limitations. The authors thank G. Chen for critical review of the manuscript. Work in G.N.’s laboratory is supported by US National Institutes of Health grants. R.C. is supported by a Career Developments Award from the Crohn’s and Colitis Foundation. B.C.L. is supported by a Canadian Institutes of Health Research (CIHR) Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Gabriel Núñez.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Immunology thanks J. Faith, J. Round and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Pathobionts

Microorganisms that, under normal circumstances, live as non-harmful symbionts but can induce pathology under certain conditions, usually involving environmental and/or genetic alterations.

Crypts of Lieberkühn

Invaginations of the small intestine that contain epithelial stem cells and Paneth cells.

Oxidative burst

The rapid production of reactive oxygen species by phagocytes that can directly kill bacteria.

Segmented filamentous bacteria

(SFB). A species of Clostridium-related bacteria that primarily inhabits the terminal ileum of mice and promotes T helper 17 cell development.

Endoplasmic reticulum stress

A consequence of dysregulated protein processing in the endoplasmic reticulum that initiates unfolded protein response pathways; unresolved endoplasmic reticulum stress is associated with inflammatory bowel disease.

Unfolded protein response

(UPR). A group of intracellular signal transduction pathways that facilitates the folding, processing, export and degradation of proteins derived from the endoplasmic reticulum during stressed conditions.

Very early-onset IBD

A form of inflammatory bowel disease (IBD) diagnosed when symptoms manifest before the age of 6 years; it presents with a severe disease course, extensive colonic involvement, poor response to therapy and the frequent need for abdominal surgery.

Faecal stream diversion

A diverting terminal ileostomy constructed proximally to an ileocolonic anastomosis, thereby excluding the neoterminal ileum, the anastomosis and the colon from the faecal intestinal transit.

Tbx21 −/−Rag2 −/− mice

Immunocompromised mice that have no adaptive immune cells and only innate immune cells with a deficiency in T-box transcription factor 21 (TBX21).

16S ribosomal RNA gene sequencing

A DNA amplification technology for the study of a gene conserved among bacteria that is used for species identification and taxonomic classification of bacteria.

Adherent and invasive Escherichia coli

E. coli strains that can adhere to and invade intestinal epithelial cells.

Faecal microbiota transplantation

(FMT). The transfer of the intestinal microbial community from a healthy individual to a patient through infusion of stool, typically by endoscopy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caruso, R., Lo, B.C. & Núñez, G. Host–microbiota interactions in inflammatory bowel disease. Nat Rev Immunol 20, 411–426 (2020). https://doi.org/10.1038/s41577-019-0268-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41577-019-0268-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing