Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanisms of signalling and biased agonism in G protein-coupled receptors

Abstract

G protein-coupled receptors (GPCRs) are the largest group of cell surface receptors in humans that signal in response to diverse inputs and regulate a plethora of cellular processes. Hence, they constitute one of the primary drug target classes. Progress in our understanding of GPCR dynamics, activation and signalling has opened new possibilities for selective drug development. A key advancement has been provided by the concept of biased agonism, which describes the ability of ligands acting at the same GPCR to elicit distinct cellular signalling profiles by preferentially stabilizing different active conformational states of the receptor. Application of this concept raises the prospect of ‘designer’ biased agonists as optimized therapeutics with improved efficacy and/or reduced side-effect profiles. However, this application will require a detailed understanding of the spectrum of drug actions and a structural understanding of the drug–receptor interactions that drive distinct pharmacologies. The recent revolution in GPCR structural biology provides unprecedented insights into ligand binding, conformational dynamics and the control of signalling outcomes. These insights, together with new approaches to multi-dimensional analysis of drug action, are allowing refined classification of drugs according to their pharmacodynamic profiles, which can be linked to receptor structure and predictions of preclinical drug efficacy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic illustration of GPCR signalling.
Fig. 2: Mechanisms of ligand-induced biased agonism.
Fig. 3: Conserved residue contact networks between class A GPCRs and G proteins.
Fig. 4: Conformational changes in class B and class C GPCRs required for G protein coupling.
Fig. 5: Compartmentalization of signalling by GPCRs.

Similar content being viewed by others

References

  1. Venkatakrishnan, A. J. et al. Structured and disordered facets of the GPCR fold. Curr. Opin. Struct. Biol. 27, 129–137 (2014).

    CAS  PubMed  Google Scholar 

  2. Alexander, S. P. et al. The concise guide to pharmacology 2017/18: G protein-coupled receptors. Br. J. Pharmacol. 174, S17–S129 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Dunn, H. A. & Ferguson, S. S. G. PDZ protein regulation of G protein-coupled receptor trafficking and signaling pathways. Mol. Pharmacol. 88, 624–639 (2015).

    CAS  PubMed  Google Scholar 

  4. Ellisdon, A. M. & Halls, M. L. Compartmentalization of GPCR signalling controls unique cellular responses. Biochem. Soc. Trans. 44, 562–567 (2016).

    CAS  PubMed  Google Scholar 

  5. Hilger, D., Masureel, M. & Kobilka, B. K. Structure and dynamics of GPCR signaling complexes. Nat. Struct. Mol. Biol. 25, 1–34 (2017).

    Google Scholar 

  6. Komolov, K. E. & Benovic, J. L. G protein-coupled receptor kinases: past, present and future. Cell. Signal. 41, 17–24 (2018).

    CAS  PubMed  Google Scholar 

  7. Peterson, Y. K. & Luttrell, L. M. The diverse roles of arrestin scaffolds in G protein–coupled teceptor signaling. Pharmacol. Rev. 69, 256–297 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Khan, S. M., Sung, J. Y. & Hébert, T. E. Gβγ subunits — different spaces, different faces. Pharmacol. Res. 111, 434–441 (2016).

    CAS  PubMed  Google Scholar 

  9. Furness, S. G. B. et al. Ligand-dependent modulation of G protein conformation alters drug efficacy. Cell 167, 739–749 (2016). This study demonstrates that differential ligand–receptor conformations propagate to G proteins to control efficacy and that this propagation could contribute to biased agonism.

    CAS  PubMed  Google Scholar 

  10. Gregorio, G. G. et al. Single-molecule analysis of ligand efficacy in β2AR–G-protein activation. Nature 547, 68–73 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Paek, J. et al. Multidimensional tracking of GPCR signaling via peroxidase-catalyzed proximity labeling. Cell 169, 338–349 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Sokolina, K. et al. Systematic protein–protein interaction mapping for clinically relevant human GPCRs. Mol. Syst. Biol. 13, 918 (2017).

    PubMed  PubMed Central  Google Scholar 

  13. Smith, J. S., Lefkowitz, R. J. & Rajagopal, S. Biased signalling: from simple switches to allosteric microprocessors. Nat. Rev. Drug Discov. 17, 243–260 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Ranjan, R., Dwivedi, H., Baidya, M., Kumar, M. & Shukla, A. K. Novel structural insights into GPCR–β-arrestin interaction and signaling. Trends Cell Biol. 27, 851–862 (2017).

    CAS  PubMed  Google Scholar 

  15. Grundmann, M. et al. Lack of beta-arrestin signaling in the absence of active G proteins. Nat. Commun. 9, 341 (2018).

    PubMed  PubMed Central  Google Scholar 

  16. Tóth, A. D. et al. Heterologous phosphorylation-induced formation of a stability lock permits regulation of inactive receptors by β-arrestins. J. Biol. Chem. 293, 876–892 (2018).

    PubMed  Google Scholar 

  17. Sriram, K. & Insel, P. A. GPCRs as targets for approved drugs: how many targets and how many drugs? Mol. Pharmacol. 93, 251–258 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Hauser, A. S., Attwood, M. M., Rask-Andersen, M., Schiöth, H. B. & Gloriam, D. E. Trends in GPCR drug discovery: new agents, targets and indications. Nat. Rev. Drug Discov. 16, 829–842 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Hauser, A. S. et al. Pharmacogenomics of GPCR drug targets. Cell 172, 41–54 (2018). This comprehensive study reveals that several GPCRs that are targeted by common drugs show extensive genetic variation in the human population, suggesting that taking GPCR variants into account when prescribing drugs would minimize ineffective treatments, adverse reactions and health-care expenses.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Flock, T. et al. Selectivity determinants of GPCR-G protein binding. Nature 545, 1–33 (2017). This study reveals the existence of selectivity barcodes on G proteins that are recognized by GPCRs and lays the foundation for understanding the molecular basis of G protein-coupling specificity.

    Google Scholar 

  21. Latorraca, N. R., Venkatakrishnan, A. J. & Dror, R. O. GPCR dynamics: structures in motion. Chem. Rev. 117, 139–155 (2017).

    CAS  PubMed  Google Scholar 

  22. Klein Herenbrink, C. et al. The role of kinetic context in apparent biased agonism at GPCRs. Nat. Commun. 7, 1–14 (2016). This is the first detailed study on the role of kinetics in GPCR biased agonism that highlights the importance of considering kinetic context in the design and interpretation of biased agonism.

    Google Scholar 

  23. Irannejad, R. et al. Functional selectivity of GPCR-directed drug action through location bias. Nat. Chem. Biol. 13, 799–806 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Halls, M. L. et al. Plasma membrane localization of the μ-opioid receptor controls spatiotemporal signaling. Sci. Signal. 9, ra16 (2016).

    PubMed  Google Scholar 

  25. Kenakin, T. Theoretical aspects of GPCR–ligand complex pharmacology. Chem. Rev. 117, 4–20 (2017).

    CAS  PubMed  Google Scholar 

  26. Burg, J. S. et al. Structural basis for chemokine recognition and activation of a viral G protein-coupled receptor. Science 347, 1113–1117 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhang, B., Albaker, A., Plouffe, B., Lefebvre, C. & Tiberi, M. Constitutive activities and inverse agonism in dopamine receptors. Adv. Pharmacol. 70, 175–214 (2014).

    CAS  PubMed  Google Scholar 

  28. Stamm, S., Gruber, S. B., Rabchevsky, A. G. & Emeson, R. B. The activity of the serotonin receptor 2C is regulated by alternative splicing. Hum. Genet. 136, 1079–1091 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Lebon, G., Warne, T. & Tate, C. G. Agonist-bound structures of G protein-coupled receptors. Curr. Opin. Struct. Biol. 22, 482–490 (2012).

    CAS  PubMed  Google Scholar 

  30. Jacobsen, S. E. et al. The GPRC6A receptor displays constitutive internalization and sorting to the slow recycling pathway. J. Biol. Chem. 292, 6910–6926 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Cooney, K. A., Molden, B. M., Kowalczyk, N. S., Russell, S. & Baldini, G. Lipid stress inhibits endocytosis of melanocortin-4 receptor from modified clathrin-enriched sites and impairs receptor desensitization. J. Biol. Chem. 292, 17731–17745 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Barbash, S., Lorenzen, E., Persson, T., Huber, T. & Sakmar, T. P. GPCRs globally coevolved with receptor activity-modifying proteins, RAMPs. Proc. Natl Acad. Sci. USA 114, 12015–12020 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Hay, D. L. & Pioszak, A. A. Receptor activity-modifying proteins (RAMPs): new insights and roles. Annu. Rev. Pharmacol. Toxicol. 56, 469–487 (2016).

    CAS  PubMed  Google Scholar 

  34. Rouault, A. A. J., Srinivasan, D. K., Yin, T. C., Lee, A. A. & Sebag, J. A. Melanocortin receptor accessory proteins (MRAPs): functions in the melanocortin system and beyond. Biochim. Biophys. Acta 1863, 2462–2467 (2017).

    CAS  Google Scholar 

  35. Mølleskov-Jensen, A. S., Oliveira, M. T., Farrell, H. E. & Davis-Poynter, N. Virus-encoded 7 transmembrane receptors. Prog. Mol. Biol. Transl Sci. 129, 353–393 (2015).

    PubMed  Google Scholar 

  36. Cheloha, R. W., Gellman, S. H., Vilardaga, J.-P. & Gardella, T. J. PTH receptor-1 signalling — mechanistic insights and therapeutic prospects. Nat. Rev. Endocrinol. 11, 712–724 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Hannan, F. M., Olesen, M. K. & Thakker, R. V. Calcimimetic and calcilytic therapies for inherited disorders of the calcium-sensing receptor signalling pathway. Br. J. Pharmacol. https://doi.org/10.1111/bph.14086 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Zantomio, D. et al. Convergent evidence for mGluR5 in synaptic and neuroinflammatory pathways implicated in ASD. Neurosci. Biobehav. Rev. 52, 172–177 (2015).

    CAS  PubMed  Google Scholar 

  39. Brown, L. S. & Ernst, O. P. Recent advances in biophysical studies of rhodopsins – oligomerization, folding, and structure. Biochim. Biophys. Acta 1865, 1512–1521 (2017).

    CAS  Google Scholar 

  40. Zürn, A. et al. Fluorescence resonance energy transfer analysis of alpha 2a-adrenergic receptor activation reveals distinct agonist-specific conformational changes. Mol. Pharmacol. 75, 534–541 (2009).

    PubMed  Google Scholar 

  41. Maier-Peuschel, M. et al. A fluorescence resonance energy transfer-based M2 muscarinic receptor sensor reveals rapid kinetics of allosteric modulation. J. Biol. Chem. 285, 8793–8800 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Devost, D. et al. Conformational profiling of the AT1 angiotensin II receptor reflects biased agonism, G protein coupling, and cellular context. J. Biol. Chem. 292, 5443–5456 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Liang, Y.-L. et al. Phase-plate cryo-EM structure of a biased agonist- bound human GLP-1 receptor-Gs complex. Nature 555, 121–125 (2018). This study provides the highest resolution cyro-electron microscopy (cryo-EM) structure of a GPCR to date and the first structure of a GPCR bound by a biased peptide ligand.

    CAS  PubMed  Google Scholar 

  44. Lee, M.-H. et al. The conformational signature of β-arrestin2 predicts its trafficking and signalling functions. Nature 531, 665–668 (2016). This study identifies distinct β-arrestin 2 conformational signatures that reflect the diverse functional roles of β-arrestins.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Nuber, S. et al. β-Arrestin biosensors reveal a rapid, receptor-dependent activation/deactivation cycle. Nature 531, 661–664 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Busillo, J. M. et al. Site-specific phosphorylation of CXCR4 is dynamically regulated by multiple kinases and results in differential modulation of CXCR4 signaling. J. Biol. Chem. 285, 7805–7817 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Kim, J. et al. Functional antagonism of different G protein-coupled receptor kinases for beta-arrestin-mediated angiotensin II receptor signaling. Proc. Natl Acad. Sci. USA 102, 1442–1447 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Zidar, D. A., Violin, J. D., Whalen, E. J. & Lefkowitz, R. J. Selective engagement of G protein coupled receptor kinases (GRKs) encodes distinct functions of biased ligands. Proc. Natl Acad. Sci. USA 106, 9649–9654 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Cahill, T. J. et al. Distinct conformations of GPCR–β-arrestin complexes mediate desensitization, signaling, and endocytosis. Proc. Natl Acad. Sci. USA 114, 2562–2567 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Butcher, A. J. et al. Differential G-protein-coupled receptor phosphorylation provides evidence for a signaling bar code. J. Biol. Chem. 286, 11506–11518 (2011).

    CAS  PubMed  Google Scholar 

  51. Nobles, K. N. et al. Distinct phosphorylation sites on the β2-adrenergic receptor establish a barcode that encodes differential functions of β-arrestin. Sci. Signal. 4, ra51 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Shiraishi, Y. et al. Phosphorylation-induced conformation of β2-adrenoceptor related to arrestin recruitment revealed by NMR. Nat. Commun. 9, 194 (2018).

    PubMed  PubMed Central  Google Scholar 

  53. Katritch, V., Cherezov, V. & Stevens, R. C. Diversity and modularity of G protein-coupled receptor structures. Trends Pharmacol. Sci. 33, 17–27 (2012).

    CAS  PubMed  Google Scholar 

  54. Venkatakrishnan, A. J. et al. Molecular signatures of G-protein-coupled receptors. Nature 494, 185–194 (2013). This work shows that, despite the very large diversity in the structure of class A GPCRs, there are common sets of non-covalent contacts between structurally equivalent residues that constitute the molecular signature of this GPCR class.

    CAS  PubMed  Google Scholar 

  55. DeVree, B. T. et al. Allosteric coupling from G protein to the agonist-binding pocket in GPCRs. Nature 535, 182–186 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Venkatakrishnan, A. J. et al. Diverse activation pathways in class A GPCRs converge near the G-protein-coupling region. Nature 40, 383–388 (2016). This is a systematic analysis of GPCR structures that reveals conserved interaction networks and characteristic features of GPCR binding and conformational changes upon activation.

    Google Scholar 

  57. Dror, R. O. et al. Activation mechanism of the β2-adrenergic receptor. Proc. Natl Acad. Sci. USA 108, 18684–18689 (2011). This study provides long-timescale, atomic-level simulations that reveal the dynamics associated with activation of a GPCR as it transitions between multiple conformational states.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Nygaard, R. et al. The dynamic process of β2-adrenergic receptor activation. Cell 152, 532–542 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Manglik, A. et al. Structural insights into the dynamic process of β2-adrenergic receptor signaling. Cell 161, 1101–1111 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Malik, R. U., Dysthe, M., Ritt, M., Sunahara, R. K. & Sivaramakrishnan, S. ER/K linked GPCR-G protein fusions systematically modulate second messenger response in cells. Sci. Rep. 7, 7749 (2017).

    PubMed  PubMed Central  Google Scholar 

  61. Gupte, T. M., Malik, R. U., Sommese, R. F., Ritt, M. & Sivaramakrishnan, S. Priming GPCR signaling through the synergistic effect of two G proteins. Proc. Natl Acad. Sci. USA 114, 3756–3761 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Flock, T. et al. Universal allosteric mechanism for Gα activation by GPCRs. Nature 524, 173–179 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Dror, R. O. et al. Structural basis for nucleotide exchange in heteromeric G proteins. Science 348, 1361–1365 (2015). This study used atomic-level simulations to elucidate the nucleotide release mechanism, which is critical for G protein activation.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Wacker, D., Wang, C., Katritch, V. & Han, G. Structural features for functional selectivity at serotonin receptors. Science 469, 175–180 (2013).

    Google Scholar 

  65. Peng, Y. et al. 5-HT 2C receptor structures reveal the structural basis of GPCR polypharmacology. Cell 172, 719–730 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Schönegge, A. M. et al. Evolutionary action and structural basis of the allosteric switch controlling β2AR functional selectivity. Nat. Commun. 8, 2169 (2017).

    PubMed  PubMed Central  Google Scholar 

  67. Liu, J. J., Horst, R., Katritch, V., Stevens, R. C. & Wüthrich, K. Biased signaling pathways in β2-adrenergic receptor characterized by 19F-NMR. Science 335, 1106–1110 (2012). This study uses NMR techniques to observe conformational differences induced in a GPCR by biased ligands.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Ballesteros, J. A. & Weinstein, H. Integrated methods for the construction of three-dimensional models and computational probing of structure-function relations in G protein-coupled receptors. Methods Neurosciences 25, 366–428 (1995).

    CAS  Google Scholar 

  69. Che, T. et al. Structure of the nanobody-stabilized active state of the kappa opioid receptor. Cell 172, 55–61 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Wacker, D. et al. Crystal structure of an LSD-bound human serotonin receptor. Cell 168, 377–389 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Wacker, D., Stevens, R. C. & Roth, B. L. How ligands illuminate GPCR molecular pharmacology. Cell 170, 414–427 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. McCorvy, J. D. et al. Structure-inspired design of β-arrestin-biased ligands for aminergic GPCRs. Nat. Chem. Biol. 14, 126–134 (2017).

    PubMed  PubMed Central  Google Scholar 

  73. Shukla, A. K. et al. Visualisation of arrestin recruitment by a G-protein-coupled receptor. Nature 512, 218–222 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Yang, F. et al. Phospho-selective mechanisms of arrestin conformations and functions revealed by unnatural amino acid incorporation and (19)F-NMR. Nat. Commun. 6, 8202 (2015).

    PubMed  Google Scholar 

  75. Staus, D. P. et al. Sortase ligation enables homogeneous GPCR phosphorylation to reveal diversity in β-arrestin coupling. Proc. Natl Acad. Sci. USA 115, 3834–3839 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Zhou, X. E. et al. Identification of phosphorylation codes for arrestin recruitment by G protein-coupled receptors. Cell 170, 457–459 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Thomsen, A. R. B. et al. GPCR-G protein-beta-arrestin super-complex mediates sustained G protein signaling. Cell 166, 907–919 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Liang, Y. L. et al. Phase-plate cryo-EM structure of a class B GPCR-G-protein complex. Nature 546, 118–123 (2017). This study presents the first cryo-EM structure of a GPCR and the first structure of a class B GPCR in an active state bound by a peptide agonist and a heterotrimeric G protein.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Zhang, Y. et al. Cryo-EM structure of the activated GLP-1 receptor in complex with a G protein. Nature 546, 248–253 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Wootten, D., Miller, L. J., Koole, C., Christopoulos, A. & Sexton, P. M. Allostery and biased agonism at class B G protein-coupled receptors. Chem. Rev. 117, 111–138 (2017).

    CAS  PubMed  Google Scholar 

  81. Siu, F. Y. et al. Structure of the human glucagon class B G-protein-coupled receptor. Nature 499, 444–449 (2013).

    CAS  PubMed  Google Scholar 

  82. Hollenstein, K. et al. Structure of class B GPCR corticotropin-releasing factor receptor 1. Nature 499, 438–443 (2013). Together with reference 80, this study describes the first TMD structures of a class B GPCR and reveals a unique binding mode for an allosteric antagonist, which occurs deep in the transmembrane bundle.

    CAS  PubMed  Google Scholar 

  83. Jazayeri, A. et al. Extra-helical binding site of a glucagon receptor antagonist. Nature 533, 274–277 (2016).

    CAS  PubMed  Google Scholar 

  84. Song, G. et al. Human GLP-1 receptor transmembrane domain structure in complex with allosteric modulators. Nature 546, 312–315 (2017).

    CAS  PubMed  Google Scholar 

  85. Koth, C. M. et al. Molecular basis for negative regulation of the glucagon receptor. Proc. Natl Acad. Sci. USA 109, 14393–14398 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Mukund, S. et al. Inhibitory mechanism of an allosteric antibody targeting the glucagon receptor. J. Biol. Chem. 288, 36168–36178 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Zhang, H. et al. Structure of the full-length glucagon class B G-protein-coupled receptor. Nature 546, 259–264 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Zhang, H. et al. Structure of the glucagon receptor in complex with a glucagon analogue. Nature 553, 106–110 (2018).

    CAS  PubMed  Google Scholar 

  89. Jazayeri, A. et al. Crystal structure of the GLP-1 receptor bound to a peptide agonist. Nature 546, 254–258 (2017).

    CAS  PubMed  Google Scholar 

  90. Wootten, D., Simms, J., Miller, L. J., Christopoulos, A. & Sexton, P. M. Polar transmembrane interactions drive formation of ligand-specific and signal pathway-biased family B G protein-coupled receptor conformations. Proc. Natl Acad. Sci. USA 110, 5211–5216 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Wootten, D. et al. The extracellular surface of the GLP-1 receptor is a molecular trigger for biased agonism. Cell 165, 1632–1643 (2016). This study provides some of the first molecular and mechanistic insights into the initiation and activation of biased agonism for a GPCR.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Dal Maso, E. et al. Extracellular loops 2 and 3 of the calcitonin receptor selectively modify agonist binding and efficacy. Biochem. Pharmacol. 150, 214–244 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Wootten, D. et al. A hydrogen-bonded polar network in the core of the glucagon-like peptide-1 receptor is a fulcrum for biased agonism: lessons from class B crystal structures. Mol. Pharmacol. 89, 335–347 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Wootten, D. et al. Key interactions by conserved polar amino acids located at the transmembrane helical boundaries in Class B GPCRs modulate activation, effector specificity and biased signalling in the glucagon-like peptide-1 receptor. Biochem. Pharmacol. 118, 68–87 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. de Graaf, C. et al. Extending the structural view of class B GPCRs. Trends Biochem. Sci. 42, 946–960 (2017).

    PubMed  Google Scholar 

  96. Harikumar, K. G. et al. Glucagon-like peptide-1 receptor dimerization differentially regulates agonist signaling but does not affect small molecule allostery. Proc. Natl Acad. Sci. USA 109, 18607–18612 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Harikumar, K. G., Lau, S., Sexton, P. M., Wootten, D. & Miller, L. J. Coexpressed class B G protein–coupled secretin and GLP-1 receptors self- and cross-associate: impact on pancreatic islets. Endocrinology 158, 1685–1700 (2017).

    PubMed  Google Scholar 

  98. Schelshorn, D. et al. Lateral allosterism in the glucagon receptor family: glucagon-like peptide 1 induces G-protein-coupled receptor heteromer formation. Mol. Pharmacol. 81, 309–318 (2012).

    CAS  PubMed  Google Scholar 

  99. Pediani, J. D., Ward, R. J., Marsango, S. & Milligan, G. Spatial intensity distribution analysis: studies of G protein-coupled receptor oligomerisation. Trends Pharmacol. Sci. 39, 175–186 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Møller, T. C., Moreno-Delgado, D., Pin, J.-P. & Kniazeff, J. Class C G protein-coupled receptors: reviving old couples with new partners. Biophys. Rep. 3, 57–63 (2017).

    PubMed  PubMed Central  Google Scholar 

  101. Geng, Y. et al. Structural mechanism of ligand activation in human calcium-sensing receptor. eLife 5, e13662 (2016).

    PubMed  PubMed Central  Google Scholar 

  102. Geng, Y., Bush, M., Mosyak, L., Wang, F. & Fan, Q. R. Structural mechanism of ligand activation in human GABAB receptor. Nature 504, 254–259 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Frangaj, A. & Fan, Q. R. Structural biology of GABA B receptor. Neuropharmacology 136, 68–79 (2017).

    PubMed  PubMed Central  Google Scholar 

  104. Xue, L. et al. Major ligand-induced rearrangement of the heptahelical domain interface in a GPCR dimer. Nat. Chem. Biol. 11, 134–140 (2015).

    CAS  PubMed  Google Scholar 

  105. Leach, K. & Gregory, K. J. Molecular insights into allosteric modulation of Class C G protein-coupled receptors. Pharmacol. Res. 116, 105–118 (2017).

    CAS  PubMed  Google Scholar 

  106. Cook, A. E. et al. Biased allosteric modulation at the CaS receptor engendered by structurally diverse calcimimetics. Br. J. Pharmacol. 172, 185–200 (2015).

    CAS  PubMed  Google Scholar 

  107. Foster, D. J. & Conn, P. J. Allosteric modulation of GPCRs: new insights and potential utility for treatment of schizophrenia and other CNS disorders. Neuron 94, 431–446 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Dijkman, P. M. & Watts, A. Lipid modulation of early G protein-coupled receptor signalling events. Biochim. Biophys. Acta 1848, 2889–2897, (2015).

    Google Scholar 

  109. Desai, A. J., Dong, M., Langlais, B. T., Dueck, A. C. & Miller, L. J. Cholecystokinin responsiveness varies across the population dependent on metabolic phenotype. Am. J. Clin. Nutr. 106, 447–456 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Desai, A. J., Dong, M. & Miller, L. J. Beneficial effects of β-sitosterol on type 1 cholecystokinin receptor dysfunction induced by elevated membrane cholesterol. Clin. Nutr. 35, 1374–1379 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Zocher, M., Zhang, C., Rasmussen, S. G. F., Kobilka, B. K. & Muller, D. J. Cholesterol increases kinetic, energetic, and mechanical stability of the human β2-adrenergic receptor. Proc. Natl Acad. Sci. USA 109, E3463–E3472 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Inagaki, S. et al. Modulation of the interaction between neurotensin receptor NTS1 and Gq protein by lipid. J. Mol. Biol. 417, 95–111 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Dawaliby, R. et al. Allosteric regulation of G protein–coupled receptor activity by phospholipids. Nat. Chem. Biol. 3, 35–39 (2015).

    Google Scholar 

  114. Guinzberg, R. et al. Newly synthesized cAMP is integrated at a membrane protein complex signalosome to ensure receptor response specificity. FEBS J. 284, 258–276 (2017).

    CAS  PubMed  Google Scholar 

  115. Stillwell, W. An Introduction to Biological Membranes: Composition, Structure and Function (Elsevier Science, 2016).

  116. Harayama, T. & Riezman, H. Understanding the diversity of membrane lipid composition. Nat. Rev. Mol. Cell Biol. 19, 281–296 (2018).

    CAS  PubMed  Google Scholar 

  117. Parton, R. G. & del Pozo, M. A. Caveolae as plasma membrane sensors, protectors and organizers. Nat. Rev. Mol. Cell Biol. 14, 98–112 (2013).

    CAS  PubMed  Google Scholar 

  118. Rosholm, K. R. et al. Membrane curvature regulates ligand-specific membrane sorting of GPCRs in living cells. Nat. Chem. Biol. 13, 724–729 (2017). This study highlights the importance of membrane curvature in regulation of GPCR function.

    CAS  PubMed  Google Scholar 

  119. Shukla, A. K. G Protein-Coupled Receptors: Signaling, Trafficking and Regulation Vol. 132 (Academic Press, 2016).

  120. Wu, G. Trafficking of GPCRs Vol. 132 (Academic Press, 2015).

  121. Bahouth, S. W. & Nooh, M. M. Barcoding of GPCR trafficking and signaling through the various trafficking roadmaps by compartmentalized signaling networks. Cell. Signal. 36, 42–55 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Wang, G., Wei, Z. & Wu, G. Role of Rab GTPases in the export trafficking of G protein-coupled receptors. Small GTPases 26, 130–135 (2017).

    Google Scholar 

  123. Irannejad, R., Tsvetanova, N. G., Lobingier, B. T. & von Zastrow, M. Effects of endocytosis on receptor-mediated signaling. Curr. Opin. Cell Biol. 35, 137–143 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Farran, B. An update on the physiological and therapeutic relevance of GPCR oligomers. Pharmacol. Res. 117, 303–327 (2017).

    CAS  PubMed  Google Scholar 

  125. Franco, R., Martínez-Pinilla, E., Lanciego, J. L. & Navarro, G. Basic pharmacological and structural evidence for class A G-protein-coupled receptor heteromerization. Front. Pharmacol. 7, 76 (2016).

    PubMed  PubMed Central  Google Scholar 

  126. Gomes, I. et al. G protein–coupled receptor heteromers. Annu. Rev. Pharmacol. Toxicol. 56, 403–425 (2016).

    CAS  PubMed  Google Scholar 

  127. DeBruine, Z. J., Xu, H. E. & Melcher, K. Assembly and architecture of the Wnt/β-catenin signalosome at the membrane. Br. J. Pharmacol. 174, 4564–4574 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. McLatchie, L. M. et al. RAMPs regulate the transport and ligand specificity of the calcitonin-receptor-like receptor. Nature 393, 333–339 (1998).

    CAS  PubMed  Google Scholar 

  129. Nikolaev, V. O. et al. Beta2-adrenergic receptor redistribution in heart failure changes cAMP compartmentation. Science 327, 1653–1657 (2010).

    CAS  PubMed  Google Scholar 

  130. Lyon, A. R. et al. Plasticity of surface structures and beta2-adrenergic receptor localization in failing ventricular cardiomyocytes during recovery from heart failure. Circ. Heart Fail. 5, 357–365 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Jensen, D. D. et al. Endothelin-converting enzyme 1 and β-arrestins exert spatiotemporal control of substance P-induced inflammatory signals. J. Biol. Chem. 289, 20283–20294 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Ayling, L. J. et al. Adenylyl cyclase AC8 directly controls its micro-environment by recruiting the actin cytoskeleton in a cholesterol-rich milieu. J. Cell Sci. 125, 869–886 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Halls, M. L. & Cooper, D. M. F. Sub-picomolar relaxin signalling by a pre-assembled RXFP1, AKAP79, AC2, β-arrestin 2, PDE4D3 complex. EMBO J. 29, 2772–2787 (2010). This study identifies pre-assembled, ligand-independent GPCR signalosomes that allow a GPCR to respond to extremely low concentrations of circulating ligands.

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Siljee, J. E. et al. Subcellular localization of MC4R with ADCY3 at neuronal primary cilia underlies a common pathway for genetic predisposition to obesity. Nat. Genet. 50, 180–185 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Navarro, G. et al. Evidence for functional pre-coupled complexes of receptor heteromers and adenylyl cyclase. Nat. Commun. 9, 1242 (2018).

    PubMed  PubMed Central  Google Scholar 

  136. Wehbi, V. L. et al. Noncanonical GPCR signaling arising from a PTH receptor–arrestin–Gβγ complex. Proc. Natl Acad. Sci. USA 110, 1530–1535 (2013). This study is one of the first to report a GPCR that promotes persistent G protein signalling from intracellular endosomal compartments, which is mediated by β-arrestins.

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Suofu, Y. et al. Dual role of mitochondria in producing melatonin and driving GPCR signaling to block cytochrome c release. Proc. Natl Acad. Sci. USA 114, E7997–E8006 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Tadevosyan, A. et al. Intracellular angiotensin-II interacts with nuclear angiotensin receptors in cardiac fibroblasts and regulates RNA synthesis, cell proliferation, and collagen secretion. J. Am. Heart Assoc. 6, e004965 (2017).

    PubMed  PubMed Central  Google Scholar 

  139. Vaniotis, G. et al. Regulation of cardiac nitric oxide signaling by nuclear β-adrenergic and endothelin receptors. J. Mol. Cell. Cardiol. 62, 58–68 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Tsvetanova, N. G., Irannejad, R. & von Zastrow, M. G. Protein-coupled receptor (GPCR) signaling via heterotrimeric G proteins from endosomes. J. Biol. Chem. 290, 6689–6696 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Tsvetanova, N. G. & von Zastrow, M. Spatial encoding of cyclic AMP signaling specificity by GPCR endocytosis. Nat. Chem. Biol. 10, 1061–1065 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Vilardaga, J.-P., Jean-Alphonse, F. G. & Gardella, T. J. Endosomal generation of cAMP in GPCR signaling. Nat. Chem. Biol. 10, 700–706 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Jensen, D. D. et al. Neurokinin 1 receptor signaling in endosomes mediates sustained nociception and is a viable therapeutic target for prolonged pain relief. Sci. Transl Med. 9, eaal3447 (2017). This study reveals a critical role for endosomal signalling of a GPCR in pain perception and demonstrates the potential therapeutic use of endosomally targeted GPCR antagonists.

    PubMed  PubMed Central  Google Scholar 

  144. Yarwood, R. E. et al. Endosomal signaling of the receptor for calcitonin gene-related peptide mediates pain transmission. Proc. Natl Acad. Sci. USA 114, 12309–12314 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Jean-Alphonse, F. G. et al. β2-adrenergic receptor control of endosomal PTH receptor signaling via Gβγ. Nat. Chem. Biol. 13, 259–261 (2017).

    CAS  PubMed  Google Scholar 

  146. Wright, P. T. et al. Caveolin-3 regulates compartmentation of cardiomyocyte beta2-adrenergic receptor-mediated cAMP signaling. J. Mol. Cell. Cardiol. 67, 38–48 (2014).

    CAS  PubMed  Google Scholar 

  147. Beautrait, A. et al. A new inhibitor of the β-arrestin/AP2 endocytic complex reveals interplay between GPCR internalization and signalling. Nat. Commun. 8, 15054 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Sykes, D. A. et al. Extrapyramidal side effects of antipsychotics are linked to their association kinetics at dopamine D2 receptors. Nat. Commun. 8, 763 (2017).

    PubMed  PubMed Central  Google Scholar 

  149. Wacker, D. et al. Crystal structure of an LSD-bound human serotonin receptor. Cell 168, 377–389 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Lane, J. R., May, L. T., Parton, R. G., Sexton, P. M. & Christopoulos, A. A kinetic view of GPCR allostery and biased agonism. Nat. Chem. Biol. 13, 929–937 (2017).

    CAS  PubMed  Google Scholar 

  151. Benredjem, B., Dallaire, P. & Pineyro, G. Analyzing biased responses of GPCR ligands. Curr. Opin. Pharmacol. 32, 71–76 (2017).

    CAS  PubMed  Google Scholar 

  152. Bradley, S. J., Tobin, A. B. & Prihandoko, R. The use of chemogenetic approaches to study the physiological roles of muscarinic acetylcholine receptors in the central nervous system. Neuropharmacology 136, 421–426 (2018).

    CAS  PubMed  Google Scholar 

  153. Roth, B. L. DREADDs for neuroscientists. Neuron 89, 683–694 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Bruchas, M. R. & Roth, B. L. New technologies for elucidating opioid receptor function. Trends Pharmacol. Sci. 37, 279–289 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Spangler, S. M. & Bruchas, M. R. Optogenetic approaches for dissecting neuromodulation and GPCR signaling in neural circuits. Curr. Opin. Pharmacol. 32, 56–70 (2017).

    CAS  PubMed  Google Scholar 

  156. Boerrigter, G., Soergel, D. G., Violin, J. D., Lark, M. W. & Burnett, J. C. TRV120027, a novel beta-arrestin biased ligand at the angiotensin II type I receptor, unloads the heart and maintains renal function when added to furosemide in experimental heart failure. Circ. Heart Fail. 5, 627–634 (2012).

    CAS  PubMed  Google Scholar 

  157. Tarigopula, M. et al. Cardiac myosin light chain phosphorylation and inotropic effects of a biased ligand, TRV120023, in a dilated cardiomyopathy model. Cardiovasc. Res. 107, 226–234 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Brust, T. F. et al. Biased agonists of the kappa opioid receptor suppress pain and itch without causing sedation or dysphoria. Sci. Signal. 9, ra117 (2016).

    PubMed  PubMed Central  Google Scholar 

  159. DeWire, S. M. et al. A G protein-biased ligand at the mu-opioid receptor is potently analgesic with reduced gastrointestinal and respiratory dysfunction compared with morphine. J. Pharmacol. Exp. Ther. 344, 708–717 (2013).

    CAS  PubMed  Google Scholar 

  160. Manglik, A. et al. Structure-based discovery of opioid analgesics with reduced side effects. Nature 537, 185–190 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Schmid, C. L. et al. Bias factor and therapeutic window correlate to predict safer opioid analgesics. Cell 171, 1165–1175 (2017). This is an important study that examines the correlation between measures of biased agonism and in vivo therapeutic index (the ratio of beneficial to detrimental effects).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Desai, A. J. & Miller, L. J. Changes in the plasma membrane in metabolic disease: impact of the membrane environment on G protein-coupled receptor structure and function. Br. J. Pharmacol. https://doi.org/10.1111/bph.13943 (2018).

    Article  PubMed  Google Scholar 

  163. Vijayakumar, N. et al. White matter integrity in individuals at ultra-high risk for psychosis: a systematic review and discussion of the role of polyunsaturated fatty acids. BMC Psychiatry 16, 287 (2016).

    PubMed  PubMed Central  Google Scholar 

  164. Cheong, H. I. et al. Hypoxia sensing through β-adrenergic receptors. JCI Insight 1, e90240 (2016).

    PubMed  PubMed Central  Google Scholar 

  165. Shellhammer, J. P. et al. Amino acid metabolites that regulate G protein signaling during osmotic stress. PLoS Genet. 13, e1006829 (2017).

    PubMed  PubMed Central  Google Scholar 

  166. Ardura, J. A., Alonso, V., Esbrit, P. & Friedman, P. A. Oxidation inhibits PTH receptor signaling and trafficking. Biochem. Biophys. Res. Commun. 482, 1019–1024 (2017).

    CAS  PubMed  Google Scholar 

  167. Ghanouni, P. et al. The effect of pH on beta(2) adrenoceptor function. Evidence for protonation-dependent activation. J. Biol. Chem. 275, 3121–3127 (2000).

    CAS  PubMed  Google Scholar 

  168. Vickery, O. N., Machtens, J. P. & Zachariae, U. Membrane potentials regulating GPCRs: insights from experiments and molecular dynamics simulations. Curr. Opin. Pharmacol. 30, 44–50 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Isom, D. G. & Dohlman, H. G. Buried ionizable networks are an ancient hallmark of G protein-coupled receptor activation. Proc. Natl Acad. Sci. USA 112, 5702–5707 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Katritch, V. et al. Allosteric sodium in class A GPCR signaling. Trends Pharmacol. Sci. 39, 233–244 (2014).

    CAS  Google Scholar 

  171. Massink, A. et al. Sodium ion binding pocket mutations and adenosine A2A receptor function. Mol. Pharmacol. 82, 305–313 (2015).

    Google Scholar 

  172. Thompson, M. D. et al. Pharmacogenetics of the G protein-coupled receptors. Methods Mol. Biol. 1175, 189–242 (2014).

    PubMed  Google Scholar 

  173. Perez, J. M. et al. β1-adrenergic receptor polymorphisms confer differential function and predisposition to heart failure. Nat. Med. 9, 1300–1305 (2003).

    CAS  Google Scholar 

  174. Liggett, S. B. et al. A polymorphism within a conserved beta(1)-adrenergic receptor motif alters cardiac function and beta-blocker response in human heart failure. Proc. Natl Acad. Sci. USA 103, 11288–11293 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Freitas, C. et al. Lymphoid differentiation of hematopoietic stem cells requires efficient Cxcr4 desensitization. J. Exp. Med. 214, 2023–2040 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Barak, L. S., Oakley, R. H., Laporte, S. A. & Caron, M. G. Constitutive arrestin-mediated desensitization of a human vasopressin receptor mutant associated with nephrogenic diabetes insipidus. Proc. Natl Acad. Sci. USA 98, 93–98 (2001).

    CAS  PubMed  Google Scholar 

  177. Michel, M. C. & Charlton, S. J. Biased agonism in drug discovery — is it too soon to choose a path? Mol. Pharmacol. 93, 259–265 (2018).

    CAS  PubMed  Google Scholar 

  178. Black, J. & Leff, P. Operational models of pharmacological agonism. Proc. R. Soc. 220, 141–162 (1983).

    CAS  Google Scholar 

  179. Hager, M. V., Clydesdale, L., Gellman, S. H., Sexton, P. M. & Wootten, D. Characterization of signal bias at the GLP-1 receptor induced by backbone modification of GLP-1. Biochem. Pharmacol. 136, 99–108 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Thompson, G. L. et al. Systematic analysis of factors influencing observations of biased agonism at the mu-opioid receptor. Biochem. Pharmacol. 113, 70–87 (2016).

    CAS  PubMed  Google Scholar 

  181. Karamitri, A. et al. Melatonin MT2 receptor variants associated with type 2 diabetes affect specific subsets of the receptor signaling modalities. Sci. Signal. (in the press) (2018).

  182. Qin, C. X. et al. Small-molecule-biased formyl peptide receptor agonist compound 17b protects against myocardial ischaemia-reperfusion injury in mice. Nat. Commun. 8, 14232 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. van der Westhuizen, E. T., Breton, B., Christopoulos, A. & Bouvier, M. Quantification of ligand bias for clinically relevant β2-adrenergic receptor ligands: implications for drug taxonomy. Mol. Pharmacol. 85, 492–509 (2014).

    PubMed  Google Scholar 

  184. Valant, C., Robert Lane, J., Sexton, P. M. & Christopoulos, A. The best of both worlds? Bitopic orthosteric/allosteric ligands of G protein–coupled receptors. Annu. Rev. Pharmacol. Toxicol. 52, 153–178 (2012).

    CAS  PubMed  Google Scholar 

  185. Thal, D., Glukhova, A., Sexton, P. M. & Christopoulos, A. Structural insights into G-protein-coupled receptor allostery. Nature 559, 45–53 (2018).

    Google Scholar 

  186. Christopoulos, A. et al. International Union of Basic and Clinical Pharmacology. XC. Multisite pharmacology: Recommendations for the nomenclature of receptor allosterism and allosteric ligands. Pharmacol. Rev. 66, 918–947 (2014).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

P.M.S., A.C. and D.W. are Principal, Senior Principal and Career Development Fellows of the National Health and Medical Research Council of Australia, respectively. M.M.B. and M.M.-S. acknowledge the UK Medical Research Council (MC_U105185859) for support. M.M.-S. is supported by a Federation of European Biochemical Societies Long-Term Fellowship, and M.M.B. is a Lister Institute Fellow and is also supported by the European Research Council (ERC-COG-2015-682414).

Reviewer information

Nature Reviews Molecular Cell Biology thanks T. Hebert, V. Katritch, S. Rajagopal and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

D.W., A.C., M.M.-S., M.M.B. and P.M.S. researched data for the article. D.W., A.C., M.M.B. and P.M.S. substantially contributed to discussion of content. D.W., M.M.B., M.M.-S. and P.M.S. wrote the article. D.W., A.C., M.M.-S., M.M.B. and P.M.S. reviewed and edited the manuscript before submission.

Corresponding authors

Correspondence to Denise Wootten or Patrick M. Sexton.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Common Gα Subunit Numbering (CGN): https://www.mrc-lmb.cam.ac.uk/CGN/GPCR Drug Browser: http://gpcrdb.org/drugs/drugbrowserGPCR Database: www.gpcrdb.orgNatural variation of GPCRs in the human population: http://www.gpcrdb.org/mutational_landscape/statisticsProtein Contacts Atlas: https://www.mrc-lmb.cam.ac.uk/pcaSelectivity determinants of GPCR–G protein signalling: http://www.gpcrdb.org/signprot/statistics

Glossary

Rhodopsin

A light-sensitive G protein-coupled receptor involved in visual phototransduction.

Arrestins

A family of intracellular transducers that can act as G protein-coupled receptor modulators by blocking G protein-mediated signalling, promoting receptor internalization and activating G protein-independent signalling pathways.

Agonist

A molecule that binds to and stabilizes the receptor in an active conformation, thereby resulting in an intracellular response.

Bioluminescence resonance energy transfer

(BRET). A biophysical technique combining a photon-emitting bioluminescent luciferase and an acceptor fluorescent protein, which is used to monitor changes in intramolecular and intermolecular proximity.

Fluorescence resonance energy transfer

(FRET). A biophysical technique combining a donor chromophore and an acceptor chromophore, which is used to monitor changes in intramolecular and intermolecular proximity.

GPCR kinases

(GRKs). G protein-coupled receptor (GPCR)-regulating protein kinases that phosphorylate intracellular receptor sites and modulate the ability of GPCRs to interact with G proteins and other intracellular transducers.

Transducer mimetic

A non-functional protein such as a camelid nanobody that binds within the transducer-binding cleft of an activated receptor to induce structural reorganization of the receptor similar to that induced by functional transducers (for example, G proteins).

Inhibitory antibody

An antibody directed against a G protein-coupled receptor that inhibits receptor activation.

Protein signalosome

A spatially restricted group of transducers and/or regulatory proteins that jointly produce a specific signalling output.

Chemotype

A chemical description of a molecule that allows identification of the similarities and differences in chemical structure compared with other molecules.

Chemogenetically modified receptors

Genetically engineered receptors that can be chemically modified to be able to alter receptor signalling properties. These include receptors selected for their capacity to interact with previously unrecognized ligands.

Optogenetics

A biophysical technique that uses modified, light-activated G protein-coupled receptors or channels to control cells in living tissue.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wootten, D., Christopoulos, A., Marti-Solano, M. et al. Mechanisms of signalling and biased agonism in G protein-coupled receptors. Nat Rev Mol Cell Biol 19, 638–653 (2018). https://doi.org/10.1038/s41580-018-0049-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41580-018-0049-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing