Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

ZipSeq: barcoding for real-time mapping of single cell transcriptomes

Abstract

Spatial transcriptomics seeks to integrate single cell transcriptomic data within the three-dimensional space of multicellular biology. Current methods to correlate a cell’s position with its transcriptome in living tissues have various limitations. We developed an approach, called ‘ZipSeq’, that uses patterned illumination and photocaged oligonucleotides to serially print barcodes (‘zipcodes’) onto live cells in intact tissues, in real time and with an on-the-fly selection of patterns. Using ZipSeq, we mapped gene expression in three settings: in vitro wound healing, live lymph node sections and a live tumor microenvironment. In all cases, we discovered new gene expression patterns associated with histological structures. In the tumor microenvironment, this demonstrated a trajectory of myeloid and T cell differentiation from the periphery inward. A combinatorial variation of ZipSeq efficiently scales in the number of regions defined, providing a pathway for complete mapping of live tissues, subsequent to real-time imaging or perturbation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Design of ZipSeq oligonucleotides, imaging setup and workflow.
Fig. 2: ZipSeq mapping of a live cell monolayer following wounding.
Fig. 3: ZipSeq mapping of single immune cell transcriptomes within a live lymph node section.
Fig. 4: ZipSeq mapping of immune cell transcriptional states in the tumor microenvironment.
Fig. 5: Increased mapping resolution reveals spatial patterns of gene expression in cell subpopulations.

Similar content being viewed by others

Data availability

For all scRNA-seq studies described here, transcript counts as determined by CellRanger count function as well as raw zipcode fastqs/counts as well as the modified genome for transgene alignment during CellRanger count can be found in the Gene Expression Omnibus under accession number GSE145502.

Lists of gene hits from differential expression analysis can be found in the Extended Data.

Raw image files from which figures are derived from can be found on Dryad at https://doi.org/10.7272/Q6H993DV.

Code availability

Visual Basics code for custom Metamorph User Program for delineation of multi-FOV spanning ROI for Mosaic illumination can be found on Github: https://github.com/BIDCatUCSF/VB-Plugin-for-Patterned-Illumination.

Python script used to generate zipcode counts from fastq available from CITE-seq10 (https://hoohm.github.io/CITE-seq-Count/).

References

  1. Galli, S. J., Borregaard, N. & Wynn, T. A. Phenotypic and functional plasticity of cells of innate immunity: macrophages, mast cells and neutrophils. Nat. Immunol. 12, 1035–1044 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Stegle, O., Teichmann, S. A. & Marioni, J. C. Computational and analytical challenges in single-cell transcriptomics. Nat. Rev. Genet. 16, 133–145 (2015).

    Article  CAS  PubMed  Google Scholar 

  3. Goltsev, Y. et al. Deep profiling of mouse splenic architecture with CODEX multiplexed imaging. Cell 174, 968–981.e15 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Angelo, M. et al. Multiplexed ion beam imaging of human breast tumors. Nat. Med. 20, 436–442 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chen, K. H., Boettiger, A. N., Moffitt, J. R., Wang, S. & Zhuang, X. Spatially resolved, highly multiplexed RNA profiling in single cells. Science 348, 1360–1363 (2015).

    Google Scholar 

  6. Eng, C. H. L. et al. Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH+. Nature 568, 235–239 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ståhl, P. L. et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353, 78 LP–82 (2016).

    Article  CAS  Google Scholar 

  8. Vickovic, S. et al. High-definition spatial transcriptomics for in situ tissue profiling. Nat. Methods 16, 987–990 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rodriques, S. G. et al. Slide-seq: a scalable technology for measuring genome-wide expression at high spatial resolution. Science 363, 1463 LP–1467 (2019).

    Article  CAS  Google Scholar 

  10. Stoeckius, M. et al. Simultaneous epitope and transcriptome measurement in single cells. Nat. Methods 14, 865–868 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Govan, J. M. et al. Optochemical control of RNA interference in mammalian cells. Nucleic Acids Res. 41, 10518–10528 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ando, H., Furuta, T., Tsien, R. Y. & Okamoto, H. Photo-mediated gene activation using caged RNA/DNA in zebrafish embryos. Nat Genet. 28, 317–325 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. McGinnis, C. S. et al. MULTI-seq: sample multiplexing for single-cell RNA sequencing using lipid-tagged indices. Nat Methods 16, 619–626 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Deiters, A. Light activation as a method of regulating and studying gene expression. Curr. Opin. Chem. Biol. 13, 678–686 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. McGinnis, C. S., Murrow, L. M. & Gartner, Z. J. DoubletFinder: doublet detection in single-cell RNA sequencing data using artificial nearest neighbors. Cell Syst. 8, 329–337.e4 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kowalczyk, M. S. et al. Single-cell RNA-seq reveals changes in cell cycle and differentiation programs upon aging of hematopoietic stem cells. Genome Res. 25, 1860–1872 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lee, J. Y. et al. The transcription factor KLF2 restrains CD4+ T follicular helper cell differentiation. Immunity 42, 252–264 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Engelhardt, J. J. et al. Marginating dendritic cells of the tumor microenvironment cross-present tumor antigens and stably engage tumor-specific T cells. Cancer Cell 21, 402–417 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Stoltzfus, C. R. et al. CytoMAP: a spatial analysis toolbox reveals features of myeloid cell organization in lymphoid tissues. Cell Rep. 33, 107523 (2020).

    Article  CAS  Google Scholar 

  20. Afik, R. et al. Tumor macrophages are pivotal constructors of tumor collagenous matrix. J. Exp. Med. 213, 2315–2331 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Trapnell, C. et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat. Biotechnol. 32, 381–386 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yang, M., McKay, D., Pollard, J. W. & Lewis, C. E. Diverse functions of macrophages in different tumor microenvironments. Cancer Res. 78, 5492–5503 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Maimela, N. R., Liu, S. & Zhang, Y. Fates of CD8+ T cells in tumor microenvironment. Comput. Struct. Biotechnol. J. 17, 1–13 (2019).

    Article  CAS  PubMed  Google Scholar 

  24. Wherry, E. J. et al. Molecular signature of CD8+ T cell exhaustion during chronic viral infection. Immunity 27, 670–684 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Im, S. J. et al. Defining CD8+ T cells that provide the proliferative burst after PD-1 therapy. Nature 537, 417–421 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jadhav, R. R. et al. Epigenetic signature of PD-1+ TCF1+ CD8 T cells that act as resource cells during chronic viral infection and respond to PD-1 blockade. Proc. Natl Acad. Sci. USA 116, 14113–14118 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chen, Z. et al. TCF-1-centered transcriptional network drives an effector versus exhausted CD8 T cell-fate decision. Immunity 51, 840–855.e5 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Garrod, K. R., Wei, S. H., Parker, I. & Cahalan, M. D. Natural killer cells actively patrol peripheral lymph nodes forming stable conjugates to eliminate MHC-mismatched targets. Proc. Natl Acad. Sci. USA 104, 12081–12086 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Okada, T. & Cyster, J. G. CC chemokine receptor 7 contributes to Gi-dependent T cell motility in the lymph node. J. Immunol. 178, 2973–2978 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Lee, M. S., Hanspers, K., Barker, C. S., Korn, A. P. & McCune, J. M. Gene expression profiles during human CD4+ T cell differentiation. Int. Immunol. 16, 1109–1124 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Medaglia, C. et al. Spatial reconstruction of immune niches by combining photoactivatable reporters and scRNA-seq. Science 358, 1622–1626 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zheng, G. X. Y. et al. Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 8, 14049 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Macosko, E. Z. et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell. 161, 1202–1214 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Picelli, S. et al. Full-length RNA-seq from single cells using Smart-seq2. Nat. Protoc. 9, 171–181 (2014).

    Article  CAS  PubMed  Google Scholar 

  35. Meador, J. P. et al. Massively parellel single-cell RNA-seq for marker-free decomposition of tissues into cell types. Science 343, 776–779 (2014).

    Article  CAS  Google Scholar 

  36. Safferling, K. et al. Wound healing revised: A novel reepithelialization mechanism revealed by in vitro and in silico models. J. Cell Biol. 203, 691–709 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Park, S. et al. Tissue-scale coordination of cellular behaviour promotes epidermal wound repair in live mice. Nat. Cell Biol. 19, 155–163 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Rockey, D. C., Weymouth, N. & Shi, Z. Smooth muscle α actin (Acta2) and myofibroblast function during hepatic wound healing. PLoS ONE 8, e77166 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Simone, T. M. et al. SERPINE1: a molecular switch in the proliferation-migration dichotomy in wound-“activated” keratinocytes. Adv. Wound Care 3, 281–290 (2014).

    Article  Google Scholar 

  40. Weber, J. P. et al. ICOS maintains the T follicular helper cell phenotype by down-regulating Krüppel-like factor 2. J. Exp. Med. 212, 217–233 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zemmour, D. et al. Single-cell gene expression reveals a landscape of regulatory T cell phenotypes shaped by the TCR. Nat Immunol. 19, 291–301 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Movahedi, K. et al. Different tumor microenvironments contain functionally distinct subsets of macrophages derived from Ly6C(high) monocytes. Cancer Res. 70, 5728–5739 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. Franklin, R. A. et al. The cellular and molecular origin of tumor-associated macrophages. Science 344, 921–925 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wang, Y. et al. The transcription factor Tcf1 preserves the effector function of exhausted CD8 T cells during chronic viral infection. Front. Immunol. 10, 1–14 (2019).

    Article  CAS  Google Scholar 

  45. Parsonage, G. et al. CXCR6 and CCR5 localize T lymphocyte subsets in nasopharyngeal carcinoma. Am. J. Pathol. 180, 1215–1222 (2012).

    Article  CAS  PubMed  Google Scholar 

  46. González-Martín, A., Mira, E. & Mañes, S. CCR5 in cancer immunotherapy. Oncoimmunology 1, 106–108 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  47. De Oliveira, C. E. et al. CCR5-dependent homing of T regulatory cells to the tumor microenvironment contributes to skin squamous cell carcinoma development. Mol. Cancer Ther. 16, 2871–2880 (2017).

    Article  PubMed  CAS  Google Scholar 

  48. Pont, F., Tosolini, M. & Fournié, J. J. Single-Cell Signature Explorer for comprehensive visualization of single cell signatures across scRNA-seq datasets. Nucleic Acids Res. 47, e133 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the Biological Imaging Development Center at the University of California San Francisco (UCSF) for help with microscopy data collection and instrumentation. We also thank the Parnassus Flow Cytometry Core for flow cytometry instrumentation, supported by grant no. P30DK063720 and the Institute for Human Genomics at UCSF for sequencing and bioinformatics support. In addition, we thank the Computational Biology and Informatics core at the UCSF Helen Diller Family Comprehensive Cancer Center for computing resources. This work was supported from NIH/NCI grant nos. P30DK063720 (M.F.K.), 1R01CA197363 (M.F.K.) and R01GM135462 (Z.J.G.), and by the Parker Institute for Cancer Immunotherapy Opportunity grant (PICI). K.H.H. was supported by a NIH T32 training grant (no. 5T32CA177555-02) and is a PICI Scholar. M.F.K. is a PICI member researcher.

Author information

Authors and Affiliations

Authors

Contributions

K.H.H. conceived and performed the experiments, analyzed data and wrote the manuscript. M.F.K. conceived the experiments, provided administrative and financial support, and wrote the manuscript. K.K. generated the PyMT-chOVA cell line. C.S.M., D.M.P., E.D.C. and Z.J.G. generated the lipid anchored oligonucleotide. J.P.E. developed custom interface for controlling illumination patterns during imaging. S.C.J. generated the KLF2-GFP reporter mouse and associated IF data. A.A.R. assisted with analysis of scRNA-seq data.

Corresponding author

Correspondence to Matthew F. Krummel.

Ethics declarations

Competing interests

K.H.H. and M.F.K. are listed on a patent application regarding the ZipSeq approach.

Additional information

Peer review information Rita Strack was the primary editor on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–8.

Reporting Summary

Supplementary Data

All gene gits from differential expression analysis shown in volcano plots (Figs. 2f, 3e,f and 4l and Supplementary Fig. 5).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, K.H., Eichorst, J.P., McGinnis, C.S. et al. ZipSeq: barcoding for real-time mapping of single cell transcriptomes. Nat Methods 17, 833–843 (2020). https://doi.org/10.1038/s41592-020-0880-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41592-020-0880-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing