Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Using MicrobiomeAnalyst for comprehensive statistical, functional, and meta-analysis of microbiome data

Abstract

MicrobiomeAnalyst is an easy-to-use, web-based platform for comprehensive analysis of common data outputs generated from current microbiome studies. It enables researchers and clinicians with little or no bioinformatics training to explore a wide variety of well-established methods for microbiome data processing, statistical analysis, functional profiling and comparison with public datasets or known microbial signatures. MicrobiomeAnalyst currently contains four modules: Marker-gene Data Profiling (MDP), Shotgun Data Profiling (SDP), Projection with Public Data (PPD), and Taxon Set Enrichment Analysis (TSEA). This protocol will first introduce the MDP module by providing a step-wise description of how to prepare, process and normalize data; perform community profiling; identify important features; and conduct correlation and classification analysis. We will then demonstrate how to perform predictive functional profiling and introduce several unique features of the SDP module for functional analysis. The last two sections will describe the key steps involved in using the PPD and TSEA modules for meta-analysis and visual exploration of the results. In summary, MicrobiomeAnalyst offers a one-stop shop that enables microbiome researchers to thoroughly explore their preprocessed microbiome data via intuitive web interfaces. The complete protocol can be executed in ~70 min.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of the MicrobiomeAnalyst workflow.
Fig. 2: Comprehensive data analysis and report generation.
Fig. 3: Interactive 3D PCoA plot for beta-diversity analysis.
Fig. 4: Heat tree visualization of taxonomic differences.
Fig. 5: Correlation network analysis.
Fig. 6: Graphical summary of LEfSe analysis.
Fig. 7: Visualization of the ‘Random Forests’ results.
Fig. 8: Visualization of enriched pathways in the KEGG global metabolic network.
Fig. 9: TSEA results.

Similar content being viewed by others

Data availability

All example datasets used in the protocol are integrated as example datasets in their respective modules and are also available for download from the ‘Resources’ page of MicrobiomeAnalyst (https://www.microbiomeanalyst.ca/MicrobiomeAnalyst/docs/Resources.xhtml). There are no restrictions on their use.

Code availability

MicrobiomeAnalyst is freely accessible as a web-based application. The underlying R code is freely available at GitHub (https://github.com/xia-lab/MicrobiomeAnalystR) under a GNU General Public License v.2 or later. The code in this protocol has been peer-reviewed.

References

  1. Gilbert, J. A., Jansson, J. K. & Knight, R. The Earth Microbiome project: successes and aspirations. BMC Biol. 12, 69 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gevers, D. et al. The Human Microbiome Project: a community resource for the healthy human microbiome. PLoS Biol. 10, e1001377 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. iHMP Research Network Consortium. The Integrative Human Microbiome Project: dynamic analysis of microbiome-host omics profiles during periods of human health and disease. Cell Host Microbe 16, 276–289 (2014).

    Article  CAS  Google Scholar 

  4. Marchesi, J. R. & Ravel, J. The vocabulary of microbiome research: a proposal. Microbiome 3, 31 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Gilbert, J. A. et al. Current understanding of the human microbiome. Nat. Med. 24, 392–400 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Schloss, P. D. et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537–7541 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Edgar, R. C. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996–998 (2013).

    Article  CAS  PubMed  Google Scholar 

  9. Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Minot, S. S., Krumm, N. & Greenfield, N. B. One Codex: a sensitive and accurate data platform for genomic microbial identification. Preprint at bioRxiv, https://doi.org/10.1101/027607 (2015).

  11. Wood, D. E. & Salzberg, S. L. Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biol. 15, R46 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Segata, N. et al. Metagenomic microbial community profiling using unique clade-specific marker genes. Nat. Methods 9, 811–814 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gloor, G. B., Macklaim, J. M., Pawlowsky-Glahn, V. & Egozcue, J. J. Microbiome datasets are compositional: and this is not optional. Front. Microbiol. 8, 2224 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  14. McMurdie, P. J. & Holmes, S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8, e61217 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dhariwal, A. et al. MicrobiomeAnalyst: a web-based tool for comprehensive statistical, visual and meta-analysis of microbiome data. Nucleic Acids Res. 45, W180–W188 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chong, J. et al. MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis. Nucleic Acids Res. 46, W486–W494 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chong, J., Yamamoto, M. & Xia, J. MetaboAnalystR 2.0: from raw spectra to biological insights. Metabolites 9, E57 (2019).

  18. Wilke, A. et al. The MG-RAST metagenomics database and portal in 2015. Nucleic Acids Res. 44, D590–D594 (2016).

    Article  CAS  PubMed  Google Scholar 

  19. Huse, S. M. et al. VAMPS: a website for visualization and analysis of microbial population structures. BMC Bioinforma. 15, 41 (2014).

    Article  Google Scholar 

  20. Zakrzewski, M. et al. Calypso: a user-friendly web-server for mining and visualizing microbiome–environment interactions. Bioinformatics 33, (782–783 (2016).

    Google Scholar 

  21. Callahan, B. J., McMurdie, P. J. & Holmes, S. P. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 11, 2639 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Baksi, K. D., Kuntal, B. K. & Mande, S. S. ‘TIME’: a web application for obtaining insights into microbial ecology using longitudinal microbiome data. Front. Microbiol. 9, 36 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Friedman, J. & Alm, E. J. Inferring correlation networks from genomic survey data. PLoS Comput. Biol. 8, e1002687 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhou, G. et al. NetworkAnalyst 3.0: a visual analytics platform for comprehensive gene expression profiling and meta-analysis. Nucleic Acids Res. 47, W234–W241 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).

    Article  Google Scholar 

  26. Segata, N. et al. Metagenomic biomarker discovery and explanation. Genome Biol. 12, R60 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Langille, M. G. et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. Biotechnol. 31, 814–821 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Aßhauer, K. P., Wemheuer, B., Daniel, R. & Meinicke, P. Tax4Fun: predicting functional profiles from metagenomic 16S rRNA data. Bioinformatics 31, 2882–2884 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Goeman, J. J., van de Geer, S. A., de Kort, F. & van Houwelingen, H. C. A global test for groups of genes: testing association with a clinical outcome. Bioinformatics 20, 93–99 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Kanehisa, M., Goto, S., Sato, Y., Furumichi, M. & Tanabe, M. KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res. 40, D109–114 (2012).

    Article  CAS  PubMed  Google Scholar 

  31. Rocca, J. D. et al. The Microbiome Stress Project: toward a global meta-analysis of environmental stressors and their effects on microbial communities. Front. Microbiol. 9, 3272 (2018).

  32. Wirbel, J. et al. Meta-analysis of fecal metagenomes reveals global microbial signatures that are specific for colorectal cancer. Nat. Med 25, 679–689 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sze, M. A. & Schloss, P. D. Looking for a signal in the noise: revisiting obesity and the Mmcrobiome. MBio 7, e01018-16 (2016).

  34. Gonzalez, A. et al. Qiita: rapid, web-enabled microbiome meta-analysis. Nat. Methods 15, 796–798 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ley, R. E., Lozupone, C. A., Hamady, M., Knight, R. & Gordon, J. I. Worlds within worlds: evolution of the vertebrate gut microbiota. Nat. Rev. Microbiol. 6, 776–788 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lozupone, C. A. et al. Meta-analyses of studies of the human microbiota. Genome Res. 23, 1704–1714 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Xia, J. & Wishart, D. S. MSEA: a web-based tool to identify biologically meaningful patterns in quantitative metabolomic data. Nucleic Acids Res. 38, W71–W77 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Langille, M. G. et al. Microbial shifts in the aging mouse gut. Microbiome 2, 50 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Rousk, J. et al. Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J. 4, 1340–1351 (2010).

    Article  PubMed  Google Scholar 

  41. Foster, Z. S., Sharpton, T. J. & Grunwald, N. J. Metacoder: an R package for visualization and manipulation of community taxonomic diversity data. PLoS Comput. Biol. 13, e1005404 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gevers, D. et al. The treatment-naive microbiome in new-onset Crohn’s disease. Cell Host Microbe 15, 382–392 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Palmela, C. et al. Adherent-invasive Escherichia coli in inflammatory bowel disease. Gut 67, 574–587 (2018).

    Article  CAS  PubMed  Google Scholar 

  44. Fang, X. et al. Escherichia coli B2 strains prevalent in inflammatory bowel disease patients have distinct metabolic capabilities that enable colonization of intestinal mucosa. BMC Syst. Biol. 12, 66 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Knights, D., Costello, E. K. & Knight, R. Supervised classification of human microbiota. FEMS Microbiol. Rev. 35, 343–359 (2011).

    Article  CAS  PubMed  Google Scholar 

  46. Zhu, C. et al. Roseburia intestinalis inhibits interleukin−17 excretion and promotes regulatory T cells differentiation in colitis. Mol. Med. Rep. 17, 7567–7574 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Morgan, X. C. et al. Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biol. 13, R79 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Riviere, A., Selak, M., Lantin, D., Leroy, F. & De Vuyst, L. Bifidobacteria and butyrate-producing colon bacteria: importance and strategies for their stimulation in the human gut. Front. Microbiol. 7, 979 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  49. DeSantis, T. Z. et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 72, 5069–5072 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Collins, A., Nolan, E., Hurley, M., D’Alton, A. & Hussey, S. Anorexia nervosa complicating pediatric Crohn disease—case report and literature review. Front. Pediatr. 6, 283 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Gerasimidis, K., McGrogan, P. & Edwards, C. A. The aetiology and impact of malnutrition in paediatric inflammatory bowel disease. J. Hum. Nutr. Diet. 24, 313–326 (2011).

    Article  CAS  PubMed  Google Scholar 

  52. Pereira, M. B., Wallroth, M., Jonsson, V. & Kristiansson, E. Comparison of normalization methods for the analysis of metagenomic gene abundance data. BMC Genomics 19, 274 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Weiss, S. et al. Normalization and microbial differential abundance strategies depend upon data characteristics. Microbiome 5, 27 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  54. McMurdie, P. J. & Holmes, S. Waste not, want not: why rarefying microbiome data is inadmissible. PLoS Comput. Biol. 10, e1003531 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. McKnight, D. T. et al. Methods for normalizing microbiome data: an ecological perspective. Methods Ecol. Evol. 10, 389–400 (2019).

    Article  Google Scholar 

  56. Dillies, M. A. et al. A comprehensive evaluation of normalization methods for Illumina high-throughput RNA sequencing data analysis. Brief. Bioinform. 14, 671–683 (2013).

    Article  CAS  PubMed  Google Scholar 

  57. Hugerth, L. W. & Andersson, A. F. Analysing microbial community composition through amplicon sequencing: from sampling to hypothesis testing. Front. Microbiol. 8, 1561 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Bullard, J. H., Purdom, E., Hansen, K. D. & Dudoit, S. Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments. BMC Bioinforma. 11, 94 (2010).

    Article  CAS  Google Scholar 

  59. Joseph, N., Paulson, C., Corrada Bravo, H. & Pop, M. Robust methods for differential abundance analysis in marker gene surveys. Nat. Methods 10, 1200–1202 (2013).

    Article  CAS  Google Scholar 

  60. Morgan, X. C. & Huttenhower, C. Chapter 12: human microbiome analysis. PLoS Comput. Biol. 8, e1002808 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ramette, A. Multivariate analyses in microbial ecology. FEMS Microbiol. Ecol. 62, 142–160 (2007).

    Article  CAS  PubMed  Google Scholar 

  62. Kuczynski, J. et al. Microbial community resemblance methods differ in their ability to detect biologically relevant patterns. Nat. Methods 7, 813–819 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Anderson, M. J. & Walsh, D. C. PERMANOVA, ANOSIM, and the Mantel test in the face of heterogeneous dispersions: what null hypothesis are you testing? Ecol. Monog. 83, 557–574 (2013).

    Article  Google Scholar 

  64. Anderson, M. J. Permutational multivariate analysis of variance (PERMANOVA). Wiley StatsRef: Statistics Reference Online, https://doi.org/10.1002/9781118445112.stat07841(2014).

  65. Faust, K. et al. Microbial co-occurrence relationships in the human microbiome. PLoS Comput. Biol. 8, e1002606 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Layeghifard, M., Hwang, D. M. & Guttman, D. S. Disentangling interactions in the microbiome: a network perspective. Trends Microbiol. 25, 217–228 (2017).

    Article  CAS  PubMed  Google Scholar 

  67. Pearson, K. Mathematical contributions to the theory of evolution.—on a form of spurious correlation which may arise when indices are used in the measurement of organs. Proc. R. Soc. Lond. 60, 489–498 (1897).

    Article  Google Scholar 

  68. Kurtz, Z. D. et al. Sparse and compositionally robust inference of microbial ecological networks. PLoS Comput. Biol. 11, e1004226 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Watts, S. C., Ritchie, S. C., Inouye, M. & Holt, K. E. FastSpar: rapid and scalable correlation estimation for compositional data. Bioinformatics 35, 1064–1066 (2018).

    Article  CAS  PubMed Central  Google Scholar 

  70. Touw, W. G. et al. Data mining in the life sciences with Random Forest: a walk in the park or lost in the jungle? Brief. Bioinform. 14, 315–326 (2013).

    Article  PubMed  Google Scholar 

  71. Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–596 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Genome Canada, Génome Québec, the Natural Sciences and Engineering Research Council of Canada (NSERC), and the Canada Research Chairs (CRC) Program for funding support.

Author information

Authors and Affiliations

Authors

Contributions

J.C. and J.X. prepared the manuscript. J.C., P.L., G.Z., and J.X. contributed to the development of MicrobiomeAnalyst. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jianguo Xia.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Protocols thanks Tiffany Weir and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Khan, N. et al. Mucosal Immunol. 12, 772–783 (2019): https://doi.org/10.1038/s41385-019-0147-3

Stinson, L. F., Boyce, M. C., Payne, M. S. & Keelan, J. A. Front. Microbiol. 10, 1124 (2019): https://doi.org/10.3389/fmicb.2019.01124

Amrane, S. et al. Sci. Rep. 9, 12807 (2019): https://doi.org/10.1038/s41598-019-49189-8

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chong, J., Liu, P., Zhou, G. et al. Using MicrobiomeAnalyst for comprehensive statistical, functional, and meta-analysis of microbiome data. Nat Protoc 15, 799–821 (2020). https://doi.org/10.1038/s41596-019-0264-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-019-0264-1

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology