Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Herpes simplex virus thymidine kinase/ganciclovir–induced cell death is enhanced by co-expression of caspase-3 in ovarian carcinoma cells

Abstract

There is a need to enhance the efficacy of genetic prodrug activation therapy using herpes simplex virus thymidine kinase (tk) and ganciclovir (GCV) following disappointing results in early clinical trials. tk/GCV has been shown to lead to the activation of caspase-3, a potent executor of apoptosis. We demonstrate that co-expression of pro-caspase-3 with tk/GCV leads to enhanced cell death in ovarian carcinoma cells in vitro. Following transfection with recombinant adenoviral vectors encoding tk, GCV treatment leads to greater cell death in pro-caspase-3–expressing clones of SKOV3 and IGROV1 than control cells, as well as more rapid activation of caspase-3 and more rapid cleavage of PARP. Flow cytometry suggests that there is a greater degree of S-phase block in the pro-caspase-3–expressing clones than in control cells following treatment with tk/GCV. None of these effects is seen following transfection with a control adenovirus that does not encode tk. The increased cell death, early caspase-3 activation and PARP cleavage, and flow cytometric changes seen in pro-caspase-3–expressing cells can be partially inhibited by treatment with benzyloxycarbonyl–val–ala–asp fluoromethylketone, a synthetic caspase inhibitor. Our data suggest that co-expression of pro-caspase-3 may lead to a significant enhancement of the efficacy of tk/GCV therapy. Cancer Gene Therapy (2001) 8, 308–319

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Huber B, Austin E, Richards C, et al . Metabolism of 5-fluorocytosine to 5-fluorouracil in human colorectal tumor cells transduced with the cytosine deaminase gene — significant antitumor effects when only a small percentage of tumor cells express cytosine deaminase Proc Natl Acad Sci USA 1994; 91:: 8302–8306

    Article  Google Scholar 

  2. McNeish I, Green N, Gilligan M, et al . Virus-directed enzyme prodrug therapy for ovarian and pancreatic cancer using retrovirally delivered E. coli nitroreductase and CB1954 Gene Ther 1998; 5:: 1061–1069

    Article  Google Scholar 

  3. Rainov N, Dobberstein K, Sena-Esteves M, et al . New prodrug activation gene therapy for cancer using cytochrome P450 4B1 and 2-aminoanthracene/4-ipomeanol Hum Gene Ther 1998; 9:: 1261–1273

    Article  Google Scholar 

  4. Cortés M, de Felipe P, Martin V, et al . Successful use of a plant gene in the treatment of cancer in vivo Gene Ther 1998; 5:: 1499–1507

    Article  Google Scholar 

  5. Kojima A, Hackett N, Ohwada A, et al . In vivo human carboxylesterase cDNA gene transfer to activate the prodrug CPT-11 for local treatment of solid tumors J Clin Invest 1998; 101:: 1789–1796

    Article  Google Scholar 

  6. Moolten F . Tumor chemosensitivity conferred by inserted herpes thymidine kinase genes: paradigm for a prospective cancer control strategy Cancer Res 1986; 46:: 5276–5281

    Google Scholar 

  7. Izquierdo M, Martin V, de Felipe P, et al . Human malignant brain tumor response to herpes simplex thymidine kinase (HSVtk)/ganciclovir gene therapy Gene Ther 1996; 3:: 491–495

    Google Scholar 

  8. Ram Z, Culver K, Oshiro E, et al . Therapy of malignant brain tumors by intratumoral implantation of retroviral vector-producer cells Nat Med 1997; 4:: 1354–1361

    Article  Google Scholar 

  9. Shand N, Weber F, Mariani L, et al . A phase 1–2 clinical trial of gene therapy for recurrent glioblastoma multiforme by tumor transduction with the herpes simplex thymidine kinase gene followed by ganciclovir Hum Gene Ther 1999; 10:: 2325–2335

    Article  Google Scholar 

  10. Klatzmann D, Valery C, Bensimon G, et al . A phase I/II study of herpes simplex virus type I thymidine kinase “suicide” gene therapy for recurrent glioblastoma Hum Gene Ther 1998; 9:: 2595–2604

    Google Scholar 

  11. Herman J, Adler H, Aguilar-Cordova E, et al . In situ gene therapy for adenocarcinoma of the prostate: a phase I clinical trial Hum Gene Ther 1999; 10:: 1239–1249

    Article  Google Scholar 

  12. Loubiere L, Tiraby M, Cazaux C, et al . The equine herpes virus 4 thymidine kinase leads to a superior ganciclovir cell killing than the human herpes virus 1 thymidine kinase Gene Ther 1999; 6:: 1638–1642

    Article  Google Scholar 

  13. Cannon J, Hamzeh F, Moore S, et al . Human herpes virus 8–encoded thymidine kinase and phosphotransferase homologues confer sensitivity of ganciclovir J Virol 1999; 73:: 4786–4793

    PubMed Central  Google Scholar 

  14. Kokoris M, Sabo P, Adman E, et al . Enhancement of tumor ablation by a selected HSV-1 thymidine kinase mutant Gene Ther 1999; 6:: 1415–1426

    Article  Google Scholar 

  15. Tong X, Engehausen D, Kaufman R, et al . Improvement of gene therapy for ovarian cancer by using acyclovir instead of ganciclovir in adenovirus-mediated thymidine kinase gene therapy Anticancer Res 1998; 18:: 713–718

    Google Scholar 

  16. Uckert W, Kammertons T, Haack K, et al . Double suicide gene (cytosine deaminase and herpes simplex virus thymidine kinase) but not single gene transfer allows reliable elimination of tumor cells in vivo Hum Gene Ther 1998; 9:: 855–865

    Article  Google Scholar 

  17. Chen S, Chen X, Wang Y, et al . Combination gene therapy for liver metastasis of colon carcinoma in vivo Proc Natl Acad Sci USA 1995; 92:: 2577–2581

    Article  Google Scholar 

  18. Benedetti S, Dimeco F, Pollo B, et al . Limited efficacy of the HSV-TK/GCV system for gene therapy of malignant gliomas and perspectives for the combined transduction of the interleukin-4 gene Hum Gene Ther 1997; 8:: 1345–1353

    Article  Google Scholar 

  19. Wei S-J, Chao Y, Shih Y-L, et al . Involvement of Fas (CD95/APO-1) and Fas ligand in apoptosis induced by ganciclovir treatment of tumor cells transduced with herpes simplex virus thymidine kinase Gene Ther 1999; 6:: 420–431

    Article  Google Scholar 

  20. Beltinger C, Fulda S, Kammertoens T, et al . Herpes simplex virus thymidine kinase/ganciclovir–induced apoptosis involves ligand-independent death receptor aggregation and activation of caspases Proc Natl Acad Sci USA 1999; 96:: 8699–8704

    Article  Google Scholar 

  21. Nicholson D . Caspase structure, proteolytic substrates, and function during apoptotic cell death Cell Death Differ 1999; 6:: 1028–1042

    Article  Google Scholar 

  22. Shinoura N, Murumatsa Y, Yoshida Y, et al . Adenovirus-mediated transfer of caspase-3 with Fas ligand induces drastic apoptosis in U-373MG glioma cells Exp Cell Res 2000; 256:: 423–433

    Article  Google Scholar 

  23. Yamabe K, Shimizu S, Ito T, et al . Cancer gene therapy using a pro-apoptotic gene, caspase-3 Gene Ther 1999; 6: 1952–1959

    Article  CAS  Google Scholar 

  24. Srinivasula S, Ahmad M, MacFarlane M, et al . Generation of constitutively active recombinant caspases-3 and -6 by rearrangement of their subunits J Biol Chem 1998; 273:: 10107–10111

    Article  Google Scholar 

  25. Tenev T, Marani M, McNeish I, et al . Caspase-3 overexpression sensitizes ovarian cancer cells to proteasome inhibitors Cell Death Differ 2000 In press

  26. Garcia-Calvo M, Peterson E, Leiting B, et al . Inhibition of human caspases by peptide-based and macromolecular inhibitors J Biol Chem 1998; 273:: 32608–32613

    Article  Google Scholar 

  27. Tenev T, Böhmer S-A, Kaufmann R, et al . Perinuclear localization of the protein-tyrosine phosphatase SHP-1 and inhibition of epidermal growth factor–stimulated STAT1/3 activation in A431 cells Eur J Cell Biol 2000; 79:: 261–271

    Article  Google Scholar 

  28. Vassaux G, Hurst H, Lemoine N . Insulation of a conditionally expressed transgene in an adenoviral vector Gene Ther 1999; 6:: 1192–1197

    Article  Google Scholar 

  29. Ring C, Blouin P, Martin L-A, et al . Use of transcriptional regulatory elements of the MUC1 and ERBB2 genes to drive tumor-selective expression of a prodrug activating enzyme Gene Ther 1997; 4:: 1045–1052

    Article  Google Scholar 

  30. Mosmann T . Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays J Immunol Methods 1983; 65:: 55–63

    Article  Google Scholar 

  31. Yu D, Wolf J, Scanlon M, et al . Enhanced c-erbB-2/neu expression in human ovarian cancer cells correlates with more severe malignancy that can be suppressed by E1A Cancer Res 1993; 53:: 891–898

    Google Scholar 

  32. Kovarik A, Peat N, Wilson D, et al . Analysis of the tissue-specific promoter of the MUC1 gene J Biol Chem 1993; 268:: 9917–9926

    Google Scholar 

  33. Lazebnik Y, Kaufmann S, Desnoyers S, et al . Cleavage of poly(ADP-ribose) polymerase by a proteinase with properties like ICE Nature 1994; 371:: 346–347

    Article  Google Scholar 

  34. Nicholson DW, Ali A, Thornberry NA, et al . Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis Nature 1995; 376:: 37–43

    Article  Google Scholar 

  35. Decker T, Lohmannmatthes ML . A quick and simple method for the quantitation of lactate dehydrogenase release in measurements of cellular cytotoxicity and tumor necrosis factor (TNF) activity J Immunol Methods 1988; 115:: 61–69

    Article  Google Scholar 

  36. Jänicke R, Ng P, Sprengart M, et al . Caspase-3 is required for α-fodrin cleavage but dispensable for cleavage of other death substrates in apoptosis J Biol Chem 1998; 273:: 15540–15545

    Article  Google Scholar 

  37. Clarke R, Lund E, Johnson I, et al . Apoptosis can be detected in attached colonic adenocarcinoma HT29 cells using annexin V binding, but not by TUNEL assay or sub G0 DNA content Cytometry 2000; 39:: 141–150

    Article  Google Scholar 

  38. Melcher A, Todryk S, Hardwick S, et al . Tumor immunogenicity is determined by the mechanism of cell death via induction of heat shock protein expression Nat Med 1998; 4:: 581–587

    Article  Google Scholar 

  39. Laster S, Wood J, Gooding L . Tumor necrosis factor can induce both apoptotic and necrotic forms of cell lysis J Immunol 1988; 141:: 2629–2635

    Google Scholar 

  40. Saldeen J . Cytokines induce both necrosis and apoptosis via a common bcl-2 inhibitable pathway in rat insulin-producing cells Endocrinology 2000; 141:: 2003–2010

    Article  Google Scholar 

  41. Vercammen D, Brouckaert G, Denecker G, et al . Dual signalling of the Fas receptor: initiation of both apoptotic and necrotic cell death receptors J Exp Med 1998; 188: 919–930

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I A McNeish.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McNeish, I., Tenev, T., Bell, S. et al. Herpes simplex virus thymidine kinase/ganciclovir–induced cell death is enhanced by co-expression of caspase-3 in ovarian carcinoma cells. Cancer Gene Ther 8, 308–319 (2001). https://doi.org/10.1038/sj.cgt.7700305

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700305

Keywords

This article is cited by

Search

Quick links