Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Human interferon lambda-1 (IFN-λ1/IL-29) modulates the Th1/Th2 response

Abstract

Interferon lambda-1 (IFN-λ1/IL-29) is a member of the Type-III interferon family, which contains three ligands: IFN-λ1, 2 and 3. These three ligands use the same unique heterodimeric receptor composed of CRF2-12 (IFN-λ-R1/IL-28Rα) and CRF2-4 (IL10-R-β) chains. Like their close relatives, the Type-I interferons, IFN-λ1, 2 and 3, promote the phosphorylation of STAT1 and STAT2, induce the ISRE3 complex, elevate OAS and MxA expression and exhibit antiviral activity in vitro. Their use of the IL10-R-β chain and their ability to phosphorylate STAT3, STAT4 and STAT5 suggested that they may also exhibit immunomodulatory activity; their antiviral action led us to hypothesize that this activity might be directed toward the Th1/Th2 system. Here, we have demonstrated that IFN-λ1 altered the activity of Th cells in three separate experimental systems: (i) mitogen stimulation, (ii) mixed-lymphocyte reaction (MLR) and (iii) stimulation of naive T cells by monocyte-derived dendritic cells (mDC). In Con-A stimulation assays, the inclusion of IFN-λ1 consistently led to markedly diminished levels of secreted interleukin (IL-13) with occasional coincident, modest elevation of secreted IFN-γ. IL-13 secretion was 100-fold more sensitive to IFN-λ1 than was IFN-γ secretion. These observations were also made in the allogeneic two-way MLR. IFN-λ1 was able to alter cytokine-mediated Th biasing and when naive T cells were exposed to allogeneic mDC that had been matured in the presence of IFN-λ1, secreted IL-13 was again markedly and consistently reduced, whereas secreted IFN-γ was largely unaltered. These functions were independent of IL-10. Our data support a hitherto unsuspected role for IFN-λ1 in modulating the development of Th1 and Th2 cells, with an apparent emphasis on the diminution of IL-13 secretion.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Sheppard P, Presnell SR, Fox B, Gilbert T, Haldeman B, Grant FJ . Interferon-like protein, Zcyto21. United States Patent Application #002003963 April 4, 2002, 2002.

  2. Kotenko SV, Gallagher G, Baurin VV, Lewis-Antes A, Shen M, Shah NK et al. IFN-lambdas mediate antiviral protection through a distinct class II cytokine receptor complex. Nat Immunol 2003; 4: 69–77.

    Article  CAS  Google Scholar 

  3. Sheppard P, Kindsvogel W, Xu W, Henderson K, Schultsmeyer S, Whitmore TE et al. IL-28, IL-29 and their class II cytokine receptor IL-28R. Nat Immunol 2003; 4: 63–68.

    Article  CAS  Google Scholar 

  4. Kotenko SV, Krause CD, Izotova LS, Pollack BP, Wu W, Pestka S . Identification and functional characterization of a second chain of the interleukin-10 receptor complex. EMBO J 1997; 16: 5894–5903.

    Article  CAS  Google Scholar 

  5. Kotenko SV, Izotova LS, Mirochnitchenko OV, Esterova E, Dickensheets H, Donnelly RP et al. Identification of the functional interleukin-22 (IL-22) receptor complex: the IL-10R2 chain (IL-10Rbeta) is a common chain of both the IL-10 and IL-22 (IL-10-related T cell-derived inducible factor, IL-TIF) receptor complexes. J Biol Chem 2001; 276: 2725–2732.

    Article  CAS  Google Scholar 

  6. Donnelly RP, Sheikh F, Kotenko SV, Dickensheets H . The expanded family of class II cytokines that share the IL-10 receptor-2 (IL-10R2) chain. J Leukoc Biol 2004; 76: 314–321.

    Article  CAS  Google Scholar 

  7. Sheikh F, Baurin VV, Lewis-Antes A, Shah NK, Smirnov SV, Anantha S et al. Cutting edge: IL-26 signals through a novel receptor complex composed of IL-20 receptor 1 and IL-10 receptor 2. J Immunol 2004; 172: 2006–2010.

    Article  CAS  Google Scholar 

  8. Coccia EM, Severa M, Giacomini E, Monneron D, Remoli ME, Julkunen I et al. Viral infection and Toll-like receptor agonists induce a differential expression of type I and lambda interferons in human plasmacytoid and monocyte-derived dendritic cells. Eur J Immunol 2004; 34: 796–805.

    Article  CAS  Google Scholar 

  9. Spann KM, Tran KC, Chi B, Rabin RL, Collins PL . Suppression of the induction of alpha, beta, and lambda interferons by the NS1 and NS2 proteins of human respiratory syncytial virus in human epithelial cells and macrophages [corrected]. J Virol 2004; 78: 4363–4369. Erratum in: J Virol 2005;78:6705.

    Article  CAS  Google Scholar 

  10. Bartlett NW, Buttigieg K, Kotenko SV, Smith GL . Murine interferon lambdas (type III interferons) exhibit potent antiviral activity in vivo in a poxvirus infection model. J Gen Virol 2005; 86: 1589–1596.

    Article  CAS  Google Scholar 

  11. Brand S, Zitzmann K, Dambacher J, Beigel F, Olszak T, Vlotides G et al. SOCS-1 inhibits expression of the antiviral proteins 2′, 5′-OAS and MxA induced by the novel interferon-lambdas IL-28A and IL-29. Biochem Biophys Res Commun 2005; 331: 543–548.

    Article  CAS  Google Scholar 

  12. Meager A, Visvalingam K, Dilger P, Bryan D, Wadhwa M . Biological activity of interleukins-28 and -29: comparison with type I interferons. Cytokine 2005; 31: 109–118.

    Article  CAS  Google Scholar 

  13. Osterlund P, Veckman V, Siren J, Klucher KM, Hiscott J, Matikainen S et al. Gene expression and antiviral activity of alpha/beta interferons and interleukin-29 in virus-infected human myeloid dendritic cells. J Virol 2005; 79: 9608–9617.

    Article  Google Scholar 

  14. Robek MD, Boyd BS, Chisari FV . Lambda interferon inhibits Hepatitis B and C virus replication. J Virol 2005; 79: 3851–3854.

    Article  CAS  Google Scholar 

  15. Yang K, Puel A, Zhang S, Eidenschenk C, Ku CL, Casrouge A et al. Human TLR-7-, -8-, and -9-mediated induction of IFN-alpha/beta and -lambda Is IRAK-4 dependent and redundant for protective immunity to viruses. Immunity 2005; 23: 465–478.

    Article  CAS  Google Scholar 

  16. Ziegler T, Matikainen S, Ronkko E, Osterlund P, Sillanpaa M, Siren J et al. Severe acute respiratory syndrome coronavirus fails to activate cytokine-mediated innate immune responses in cultured human monocyte-derived dendritic cells. J Virol 2005; 79: 13800–13805.

    Article  CAS  Google Scholar 

  17. Ank N, West H, Bartholdy C, Eriksson K, Thomsen AR, Paludan SR . Lambda interferon (IFN-lambda), a type III IFN, is induced by viruses and IFNs and displays potent antiviral activity against select virus infections in vivo. J Virol 2006; 80: 4501–4509.

    Article  CAS  Google Scholar 

  18. Chi B, Dickensheets HL, Spann KM, Alston MA, Luongo C, Dumoutier L et al. Alpha and lambda interferon together mediate suppression of CD4T cells induced by respiratory syncytial virus. J Virol 2006; 80: 5032–5040.

    Article  CAS  Google Scholar 

  19. Fuld S, Cunningham C, Klucher K, Davison AJ, Blackbourn DJ . Inhibition of interferon signalling by the Kaposi's sarcoma-associated herpesvirus full-length viral interferon regulatory factor 2 protein. J Virol 2006; 80: 3092–3097.

    Article  CAS  Google Scholar 

  20. Matikainen S, Siren J, Tissari J, Veckman V, Pirhonen J, Severa M et al. Tumor necrosis factor alpha enhances influenza A virus-induced expression of antiviral cytokines by activating RIG-I gene expression. J Virol 2006; 80: 3515–3522.

    Article  CAS  Google Scholar 

  21. Melchjorsen J, Siren J, Julkunen I, Paludan SR, Matikainen S . Induction of cytokine expression by herpes simplex virus in human monocyte-derived macrophages and dendritic cells is dependent on virus replication and is counteracted by ICP27 targeting NF-kappaB and IRF-3. J Gen Virol 2006; 87: 1099–1108.

    Article  CAS  Google Scholar 

  22. Dumoutier L, Lejeune D, Hor S, Fickenscher H, Renauld JC . Cloning of a new type II cytokine receptor activating signal transducer and activator of transcription (STAT)1, STAT2 and STAT3. Biochem J 2003; 370: 391–396.

    Article  CAS  Google Scholar 

  23. Dumoutier L, Tounsi A, Michiels T, Sommereyns C, Kotenko SV, Renauld JC . Role of the interleukin (IL)-28 receptor tyrosine residues for antiviral and antiproliferative activity of IL-29/interferon-lambda 1: similarities with type I interferon signalling. J Biol Chem 2004; 279: 32269–32274.

    Article  CAS  Google Scholar 

  24. Blumberg H, Conklin D, Xu WF, Grossmann A, Brender T, Carollo S et al. Interleukin 20: discovery, receptor identification, and role in epidermal function. Cell 2001; 104: 9–19.

    Article  CAS  Google Scholar 

  25. Dumoutier L, Leemans C, Lejeune D, Kotenko SV, Renauld JC . Cutting edge: STAT activation by IL-19, IL-20 and mda-7 through IL-20 receptor complexes of two types. J Immunol 2001; 167: 3545–3549.

    Article  CAS  Google Scholar 

  26. Parrish-Novak J, Xu W, Brender T, Yao L, Jones C, West J et al. Interleukins 19, 20, and 24 signal through two distinct receptor complexes. Differences in receptor-ligand interactions mediate unique biological functions. J Biol Chem 2002; 277: 47517–47523.

    Article  CAS  Google Scholar 

  27. Wang M, Tan Z, Zhang R, Kotenko SV, Liang P . Interleukin 24 (MDA-7/MOB-5) signals through two heterodimeric receptors, IL-22R1/IL-20R2 and IL-20R1/IL-20R2. J Biol Chem 2002; 277: 7341–7347.

    Article  CAS  Google Scholar 

  28. Beadling C, Guschin D, Witthuhn BA, Ziemiecki A, Ihle JN, Kerr IM et al. Activation of JAK kinases and STAT proteins by interleukin-2 and interferon alpha, but not the T cell antigen receptor, in human T lymphocytes. EMBO J 1994; 13: 5605–5615.

    Article  CAS  Google Scholar 

  29. Azam M, Erdjument-Bromage H, Kreider BL, Xia M, Quelle F, Basu R et al. Interleukin-3 signals through multiple isoforms of Stat5. EMBO J 1995; 14: 1402–1411.

    Article  CAS  Google Scholar 

  30. Gouilleux F, Pallard C, Dusanter-Fourt I, Wakao H, Haldosen LA, Norstedt G et al. Prolactin, growth hormone, erythropoietin and granulocyte-macrophage colony stimulating factor induce MGF-Stat5 DNA binding activity. EMBO J 1995; 14: 2005–2013.

    Article  CAS  Google Scholar 

  31. Hou J, Schindler U, Henzel WJ, Wong SC, McKnight SL . Identification and purification of human Stat proteins activated in response to interleukin-2. Immunity 1995; 2: 321–329.

    Article  CAS  Google Scholar 

  32. Mui AL, Wakao H, O'Farrell AM, Harada N, Miyajima A . Interleukin-3, granulocyte-macrophage colony stimulating factor and interleukin-5 transduce signals through two STAT5 homologs. EMBO J 1995; 14: 1166–1175.

    Article  CAS  Google Scholar 

  33. Jacobson NG, Szabo SJ, Weber-Nordt RM, Zhong Z, Schreiber RD, Darnell Jr JE et al. Interleukin 12 signalling in T helper type 1 (Th1) cells involves tyrosine phosphorylation of signal transducer and activator of transcription (Stat)3 and Stat4. J Exp Med 1995; 181: 1755–1762.

    Article  CAS  Google Scholar 

  34. Cho SS, Bacon CM, Sudarshan C, Rees RC, Finbloom D, Pine R et al. Activation of STAT4 by IL-12 and IFN-alpha: evidence for the involvement of ligand-induced tyrosine and serine phosphorylation. J Immunol 1996; 157: 4781–4789.

    CAS  PubMed  Google Scholar 

  35. Thierfelder WE, van Deursen JM, Yamamoto K, Tripp RA, Sarawar SR, Carson RT et al. Requirement for Stat4 in interleukin-12-mediated responses of natural killer and T cells. Nature 1996; 382: 171–174.

    Article  CAS  Google Scholar 

  36. Murphy KM, Ouyang W, Szabo SJ, Jacobson NG, Guler ML, Gorham JD et al. T helper differentiation proceeds through Stat1-dependent, Stat4-dependent and Stat4-independent phases. Curr Top Microbiol Immunol 1999; 238: 13–26.

    CAS  PubMed  Google Scholar 

  37. Contoli M, Message SD, Laza-Stanca V, Edwards MR, Wark PA, Bartlett NW et al. Role of deficient type III interferon-lambda production in asthma exacerbations. Nat Med 2006; 12: 1023–1026.

    Article  CAS  Google Scholar 

  38. Jordan WJ, Eskdale J, Boniotto M, Rodia M, Kellner D, Gallagher G . Modulation of the human cytokine response by interferon lambda (IFN-λl/IL-29). Genes Immun 2007; 8: 13–20.

    Article  CAS  Google Scholar 

  39. Mihm S, Frese M, Meier V, Wietzke-Braun P, Scharf JG, Bartenschlager R et al. Interferon type I gene expression in chronic hepatitis C. Lab Invest 2004; 84: 1148–1159.

    Article  CAS  Google Scholar 

  40. Leung S, Qureshi SA, Kerr IM, Darnell Jr JE, Stark GR . Role of STAT2 in the alpha interferon signalling pathway. Mol Cell Biol 1995; 15: 1312–1317.

    Article  CAS  Google Scholar 

  41. Qureshi SA, Leung S, Kerr IM, Stark GR, Darnell Jr JE . Function of Stat2 protein in transcriptional activation by alpha interferon. Mol Cell Biol 1996; 16: 288–293.

    Article  CAS  Google Scholar 

  42. Siren J, Pirhonen J, Julkunen I, Matikainen S . IFN-alpha regulates TLR-dependent gene expression of IFN-alpha, IFN-beta, IL-28, and IL-29. J Immunol 2005; 174: 1932–1937.

    Article  CAS  Google Scholar 

  43. Mennechet FJ, Uze G . Interferon-lambda-treated dendritic cells specifically induce proliferation of FOXP3-expressing suppressor T cells. Blood 2006; 107: 4417–4423.

    Article  CAS  Google Scholar 

  44. Dickensheets HL, Venkataraman C, Schindler U, Donnelly RP . Interferons inhibit activation of STAT6 by interleukin 4 in human monocytes by inducing SOCS-1 gene expression. Proc Natl Acad Sci USA 1999; 96: 10800–10805.

    Article  CAS  Google Scholar 

  45. Ray A, Cohn L . Th2 cells and GATA-3 in asthma: new insights into the regulation of airway inflammation. J Clin Invest 1999; 104: 985–993.

    Article  CAS  Google Scholar 

  46. Wills-Karp M, Chiaramonte M . Interleukin-13 in asthma. Curr Opin Pulm Med 2003; 9: 21–27.

    Article  CAS  Google Scholar 

  47. Izuhara K, Arima K . Signal transduction of IL-13 and its role in the pathogenesis of bronchial asthma. Drug News Perspect 2004; 17: 91–98.

    Article  CAS  Google Scholar 

  48. Huang SK, Xiao HQ, Kleine-Tebbe J, Paciotti G, Marsh DG, Lichtenstein LM et al. IL-13 expression at the sites of allergen challenge in patients with asthma. J Immunol 1995; 155: 2688–2694.

    CAS  PubMed  Google Scholar 

  49. Humbert M, Durham SR, Kimmitt P, Powell N, Assoufi B, Pfister R et al. Elevated expression of messenger ribonucleic acid encoding IL-13 in the bronchial mucosa of atopic and nonatopic subjects with asthma. J Allergy Clin Immunol 1997; 99: 657–665.

    Article  CAS  Google Scholar 

  50. Padilla J, Daley E, Chow A, Robinson K, Parthasarathi K, McKenzie AN et al. IL-13 regulates the immune response to inhaled antigens. J Immunol 2005; 174: 8097–8105.

    Article  CAS  Google Scholar 

  51. Mattes J, Yang M, Siqueira A, Clark K, MacKenzie J, McKenzie AN et al. IL-13 induces airways hyperreactivity independently of the IL-4R alpha chain in the allergic lung. J Immunol 2001; 167: 1683–1692.

    Article  CAS  Google Scholar 

  52. Walter DM, McIntire JJ, Berry G, McKenzie AN, Donaldson DD, DeKruyff RH et al. Critical role for IL-13 in the development of allergen-induced airway hyperreactivity. J Immunol 2001; 167: 4668–4675.

    Article  CAS  Google Scholar 

  53. Taube C, Duez C, Cui ZH, Takeda K, Rha YH, Park JW et al. The role of IL-13 in established allergic airway disease. J Immunol 2002; 169: 6482–6489.

    Article  CAS  Google Scholar 

  54. Finotto S, Hausding M, Doganci A, Maxeiner JH, Lehr HA, Luft C et al. Asthmatic changes in mice lacking T-bet are mediated by IL-13. Int Immunol 2005; 17: 993–1007.

    Article  CAS  Google Scholar 

  55. Hashimoto T, Kobayashi N, Kajiyama Y, Kaminuma O, Suko M, Mori A . IL-2-induced IL-13 production by allergen-specific human helper T cell clones. Int Arch Allergy Immunol 2006; 140 (Suppl 1): 51–54.

    Article  CAS  Google Scholar 

  56. Kaur D, Hollins F, Woodman L, Yang W, Monk P, May R et al. Mast cells express IL-13Ralpha1: IL-13 promotes human lung mast cell proliferation and Fc epsilonRI expression. Allergy 2006; 61: 1047–1053.

    Article  CAS  Google Scholar 

  57. O'Byrne PM . Cytokines or their antagonists for the treatment of asthma. Chest 2006; 130: 244–250.

    Article  CAS  Google Scholar 

  58. Tarazona-Santos E, Tishkoff SA . Divergent patterns of linkage disequilibrium and haplotype structure across global populations at the interleukin-13 (IL13) locus. Genes Immun 2005; 6: 53–65.

    Article  CAS  Google Scholar 

  59. van der Pouw Kraan TC, van Veen A, Boeije LC, van Tuyl SA, de Groot ER, Stapel SO et al. An IL-13 promoter polymorphism associated with increased risk of allergic asthma. Genes Immun 1999; 1: 61–65.

    Article  CAS  Google Scholar 

  60. Ober C, Hoffjan S . Asthma genetics 2006: the long and winding road to gene discovery. Genes Immun 2006; 7: 95–100.

    Article  CAS  Google Scholar 

  61. Gallagher G, Dickensheets H, Eskdale J, Izotova LS, Mirochnitchenko OV, Peat JD et al. Cloning, expression and initial characterization of interleukin-19 (IL-19), a novel homologue of human interleukin-10 (IL-10). Genes Immun 2000; 1: 442–450.

    Article  CAS  Google Scholar 

  62. Gallagher G, Eskdale J, Jordan W, Peat J, Campbell J, Boniotto M et al. Human interleukin-19 and its receptor: a potential role in the induction of Th2 responses. Int Immunopharmacol 2004; 4: 615–626.

    Article  CAS  Google Scholar 

  63. Liao SC, Cheng YC, Wang YC, Wang CW, Yang SM, Yu CK et al. IL-19 induced Th2 cytokines and was up-regulated in asthma patients. J Immunol 2004; 173: 6712–6718.

    Article  CAS  Google Scholar 

  64. Oral HB, Kotenko SV, Yilmaz M, Mani O, Zumkehr J, Blaser K et al. Regulation of T cells and cytokines by the interleukin-10 (IL-10)-family cytokines IL-19, IL-20, IL-22, IL-24 and IL-26. Eur J Immunol 2006; 36: 380–388.

    Article  CAS  Google Scholar 

  65. Jordan WJ, Eskdale J, Boniotto M, Lennon GP, Peat J, Campbell JD et al. Human IL-19 regulates immunity through auto-induction of IL-19 and production of IL-10. Eur J Immunol 2005; 35: 1576–1582.

    Article  CAS  Google Scholar 

  66. Jordan WJ, Ritter MA . Optimal analysis of composite cytokine responses during alloreactivity. J Immunol Methods 2002; 260: 1–14.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was carried out in the laboratories of the Department of Oral Biology, University of Medicine and Dentistry of New Jersey. Dr WJ Jordan was supported by a grant from NIDCR, NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G Gallagher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jordan, W., Eskdale, J., Srinivas, S. et al. Human interferon lambda-1 (IFN-λ1/IL-29) modulates the Th1/Th2 response. Genes Immun 8, 254–261 (2007). https://doi.org/10.1038/sj.gene.6364382

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gene.6364382

Keywords

This article is cited by

Search

Quick links