Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Inhibition of clonogenic tumor growth: a novel function of Smac contributing to its antitumor activity

Abstract

While second mitochondria derived activator of caspase (Smac) has been described to sensitize for apoptosis, its effect on cell viability in the absence of apoptotic stimuli has remained unclear. Here, we report that Smac inhibits clonogenic tumor growth by blocking random migration and proliferation and by enhancing apoptosis in a cell density and cell type dependent manner in SH-EP neuroblastoma cells. Inhibition of clonogenic survival by overexpression of full-length or processed Smac strictly depended on low cell density, and was reversible by replatement at high density. We discovered that Smac inhibits cell motility and random migration at low cell density. In addition, Smac enhanced apoptosis and inhibited protein, but not mRNA expression of XIAP, survivin and other short-lived proteins (FLIP, p21), indicating that Smac may globally inhibit protein expression. Also, Smac inhibited proliferation and increased polynucleation with no evidence for polyploidy, cell cycle arrest or senescence indicating that Smac impaired cell division. Interestingly, inhibition of clonogenic capacity by Smac occurred independent of its apoptosis promoting activity. By demonstrating that Smac restrains clonogenic tumor growth, our findings may have important implications for control of tumor growth and/or its metastatic spread. Thus, Smac agonists may be useful in cancer therapy, for example, for tumor control in minimal residual disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Abbreviations

AIF:

apoptosis-inducing factor

CAM:

chorion allantois membrane

DEVD-D2R:

Asp-Glu-Val-Asp-Rhodamin

FACS:

fluorescence activated cell sorting

FLIP:

FLICE inhibitory protein

IAPs:

inhibitor of apoptosis proteins

Smac:

second mitochondria derived activator of caspase

TRAIL:

TNF-related apoptosis inducing ligand

XIAP:

X-linked inhibitor of apoptosis

zVAD.fmk:

benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone

zVDVAD-AFC:

N-benzyloxycarbonyl-Val-Asp-Val-Ala-Asp-AFC

References

  • Altieri DC . (2003). Nat. Rev. Cancer, 3, 46–54.

  • Ashkenazi A . (2002). Nat. Rev. Cancer, 2, 420–430.

  • Chai J, Du C, Wu JW, Kyin S, Wang X and Shi Y . (2000). Nature, 406, 855–862.

  • Creagh EM, Murphy BM, Duriez PJ, Duckett CS and Martin SJ . (2004). J. Biol. Chem., 279, 26906–26914.

  • Degterev A, Boyce M and Yuan J . (2003). Oncogene, 22, 8543–8567.

  • Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C, Medrano EE, Linskens M, Rubelj I, Pereira-Smith O, Peacocke M and Campisi J . (1995). PNAS, 92, 9363–9367.

  • Fulda S, Friesen C, Los M, Scaffidi C, Mier W, Benedict M, Nunez G, Krammer PH, Peter ME and Debatin KM . (1997). Cancer Res., 57, 4956–4964.

  • Fulda S, Wick W, Weller M and Debatin KM . (2002). Nat. Med., 8, 808–815.

  • Geisbrecht ER and Montell DJ . (2004). Cell, 118, 111–125.

  • Guo F, Nimmanapalli R, Paranawithana S, Wittman S, Griffin D, Bali P, O'Bryan E, Fumero C, Wang HG and Bhalla K . (2002). Blood, 99, 3419–3426.

  • Hao Y, Sekine K, Kawabata A, Nakamura H, Ishioka T, Ohata H, Katayama R, Hashimoto C, Zhang X, Noda T, Tsuruo T and Naito M . (2004). Nat. Cell Biol., 6, 849–860.

  • Hasenjager A, Gillissen B, Muller A, Normand G, Hemmati PG, Schuler M, Dorken B and Daniel PT . (2004). Oncogene, 23, 4523–4535.

  • Hengartner MO . (2000). Nature, 407, 770–776.

  • Holley CL, Olson MR, Colon-Ramos DA and Kornbluth S . (2002). Nat. Cell Biol., 4, 439–444.

  • Hu S and Yang X . (2003). J. Biol. Chem., 278, 10055–10060.

  • Jia L, Patwari Y, Kelsey SM, Srinivasula SM, Agrawal SG, Alnemri ES and Newland AC . (2003). Oncogene, 22, 1589–1599.

  • Kuefer R, Hofer MD, Altug V, Zorn C, Genze F, Kunzi-Rapp K, Hautmann RE and Gschwend JE . (2004). Br. J. Cancer, 90, 535–541.

  • MacFarlane M, Merrison W, Bratton SB and Cohen GM . (2002). J. Biol. Chem., 277, 36611–36616.

  • McNeish IA, Bell S, McKay T, Tenev T, Marani M and Lemoine NR . (2003). Exp. Cell Res., 286, 186–198.

  • McNeish IA, Lopes R, Bell SJ, McKay TR, Fernandez M, Lockley M, Wheatley SP and Lemoine NR . (2005). Exp. Cell Res., 302, 69–82.

  • Mizutani Y, Nakanishi H, Yamamoto K, Li YN, Matsubara H, Mikami K, Okihara K, Kawauchi A, Bonavida B and Miki T . (2005). J. Clin. Oncol., 23, 448–454.

  • Ng CP and Bonavida B . (2002). Mol. Cancer Ther., 1, 1051–1058.

  • Pei Z, Chu L, Zou W, Zhang Z, Qiu S, Qi R, Gu J, Qian C and Liu X . (2004). Hepatology, 39, 1371–1381.

  • Roberts DL, Merrison W, MacFarlane M and Cohen GM . (2001). J. Cell Biol., 153, 221–228.

  • Robertson JD, Gogvadze V, Kropotov A, Vakifahmetoglu H, Zhivotovsky B and Orrenius S . (2004). EMBO Rep., 5, 643–648.

  • Saelens X, Festjens N, Walle LV, van Gurp M, van Loo G and Vandenabeele P . (2004). Oncogene, 23, 2861–2874.

  • Salvesen GS and Duckett CS . (2002). Nat. Rev. Mol. Cell. Biol., 3, 401–410.

  • Scaffidi C, Medema JP, Krammer PH and Peter ME . (1997). J. Biol. Chem., 272, 26953–26958.

  • Shiozaki EN and Shi Y . (2004). Trends Biochem. Sci., 29, 486–494.

  • Silke J, Kratina T, Ekert PG, Pakusch M and Vaux DL . (2004). J. Biol. Chem., 279, 4313–4321.

  • Srinivasula SM, Datta P, Fan XJ, Fernandes-Alnemri T, Huang Z and Alnemri ES . (2000). J. Biol. Chem., 275, 36152–36157.

  • Vaux DL and Silke J . (2003). Biochem. Biophys. Res. Comm., 304, 499–504.

  • Wu G, Chai J, Suber TL, Wu JW, Du C, Wang X and Shi Y . (2000). Nature, 408, 1008–1012.

  • Yan Y, Mahotka C, Heikaus S, Shibata T, Wethkamp N, Liebmann J, Suschek CV, Guo Y, Gabbert HE, Gerharz CD and Ramp U . (2004). Br. J. Cancer, 91, 1349–1357.

  • Yang L, Mashima T, Sato S, Mochizuki M, Sakamoto H, Yamori T, Oh-hara T and Tsuruo T . (2003). Cancer Res., 63, 831–837.

  • Yang QH and Du C . (2004). J. Biol. Chem., 279, 16963–16970.

  • Yoo SJ, Huh JR, Muro I, Yu H, Wang L, Wang SL, Feldman RM, Clem RJ, Muller HA and Hay BA . (2002). Nat. Cell Biol., 4, 416–424.

Download references

Acknowledgements

We thank M Jovanovic and A Dittrich for expert technical assistance, L Behrend and R Zwacka (Division of Gene Therapy, University of Ulm, Germany) for providing MnSOD-transfected HCT116 colon carcinoma cells, P Krammer (DKFZ, Heidelberg, Germany) for providing NF6 mouse anti-FLIP mAb and M Bachem (Department of Clinical Chemistry, University Hospital, Ulm, Germany) for help with time lapse microscopy. This work has been partially supported by grants from the Deutsche Forschungsgemeinschaft, the Deutsche Krebshilfe, the Bundesministerium für Forschung und Technologie, the Ministry of Science, Research and Arts of Baden-Württemberg, IZKF Ulm, Wilhelm-Sander-Stiftung and Else-Kröner-Stiftung (to KMD and SF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simone Fulda.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vogler, M., Giagkousiklidis, S., Genze, F. et al. Inhibition of clonogenic tumor growth: a novel function of Smac contributing to its antitumor activity. Oncogene 24, 7190–7202 (2005). https://doi.org/10.1038/sj.onc.1208876

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1208876

Keywords

This article is cited by

Search

Quick links