Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Wiring the cell signaling circuitry by the NF-κB and JNK1 crosstalk and its applications in human diseases

Abstract

Integration of the cell signaling circuitry determines the ultimate response of a cell to extracellular stimuli. The transcription factor nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinase JNK1 are major players in the cell signaling circuitry, regulating numerous cellular events and being implicated in the process of many human diseases and certain types of cancer. The interplay between NF-κB and JNK1 provides a paradigm that shows how the crosstalk between different signaling pathways decides the function of the cell signaling circuitry. Understanding the wiring of the cell signaling circuitry may hold the key for cell signaling-based therapy of human diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Adler V, Franklin CC, Kraft AS . (1992). Phorbol esters stimulate the phosphorylation of c-Jun but not v-Jun: regulation by the N-terminal delta domain. Proc Natl Acad Sci USA 89: 5341–5345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amanullah A, Azam N, Balliet A, Hollander C, Hoffman B, Fornace A et al. (2003). Cell signalling: cell survival and a Gadd45-factor deficiency. Nature 424: 741.

    Article  CAS  PubMed  Google Scholar 

  • Antonyak MA, Kenyon LC, Godwin AK, James DC, Emlet DR, Okamoto I et al. (2002). Elevated JNK activation contributes to the pathogenesis of human brain tumors. Oncogene 21: 5038–5046.

    Article  CAS  PubMed  Google Scholar 

  • Baeuerle PA, Baltimore D . (1996). Nf-κb: ten years after. Cell 87: 13–20.

    Article  CAS  PubMed  Google Scholar 

  • Baldwin Jr AS . (1996). The NF-κB and IκB proteins: new discoveries and insights. Annu Rev Immunol 14: 649–683.

    Article  CAS  PubMed  Google Scholar 

  • Barnes PJ, Karin M . (1997). Nf-κb: a pivotal transcription factor in chronic inflammatory diseases. N Engl J Med 336: 1066–1071.

    Article  CAS  PubMed  Google Scholar 

  • Beg AA, Baltimore D . (1996). An essential role for NF-κB in preventing TNF-alpha-induced cell death. Science 274: 782–784.

    Article  CAS  PubMed  Google Scholar 

  • Bender KM, Gottlicher S, Whiteside H, Rahmsdorf J, Herrlich P . (1998). Sequential DNA damage-independent and -dependent activation of NF-κB by UV. EMBO J 17: 5170–5181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Binetruy B, Smeal T, Karin M . (1991). Ha-Ras augments c-Jun activity and stimulates phosphorylation of its activation domain. Nature 351: 122–127.

    Article  CAS  PubMed  Google Scholar 

  • Campbell KJ, Rocha S, Perkins ND . (2004). Active repression of antiapoptotic gene expression by RelA(p65) NF-κB. Mol Cell 13: 853–865.

    Article  CAS  PubMed  Google Scholar 

  • Chang L, Karin M . (2001). Mammalian MAP kinase signalling cascades. Nature 410: 37–40.

    Article  CAS  PubMed  Google Scholar 

  • Chang L, Kamata H, Solinas G, Luo JL, Maeda S, Venuprasad K et al. (2006). The E3 ubiquitin ligase itch couples JNK activation to TNFalpha-induced cell death by inducing c-FLIP(L) turnover. Cell 124: 601–613.

    Article  CAS  PubMed  Google Scholar 

  • Courtois G, Gilmore TD . (2006). Mutations in the NF-kappaB signaling pathway: implications for human disease. Oncogene 25: 6831–6843.

    Article  CAS  PubMed  Google Scholar 

  • Cripe LD, Gelfanov VM, Smith EA, Spigel DR, Phillips CA, Gabig TG et al. (2002). Role for c-jun N-terminal kinase in treatment-refractory acute myeloid leukemia (AML): signaling to multidrug-efflux and hyperproliferation. Leukemia 16: 799–812.

    Article  CAS  PubMed  Google Scholar 

  • Davis RJ . (2000). Signal transduction by the JNK group of MAP kinases. Cell 103: 239–252.

    Article  CAS  PubMed  Google Scholar 

  • De Smaele E, Zazzeroni F, Papa S, Nguyen DU, Jin R, Jones J et al. (2001). Induction of gadd45beta by NF-kappa B downregulates pro-apoptotic JNK signalling. Nature 414: 308–313.

    Article  CAS  PubMed  Google Scholar 

  • Deng Y, Ren X, Yang L, Lin Y, Wu X . (2003). A JNK-dependent pathway is required for TNFalpha-induced apoptosis. Cell 115: 61–70.

    Article  CAS  PubMed  Google Scholar 

  • Derijard B, Hibi M, Wu IH, Barrett T, Su B, Deng T et al. (1994). JNK1: a protein kinase stimulated by UV light and Ha-Ras that binds and phosphorylates the c-Jun activation domain. Cell 76: 1025–1037.

    Article  CAS  PubMed  Google Scholar 

  • Derijard B, Raingeaud J, Barrett T, Wu IH, Han J, Ulevitch RJ et al. (1995). Independent human MAP-kinase signal transduction pathways defined by MEK and MKK isoforms. Science 267: 682–685.

    Article  CAS  PubMed  Google Scholar 

  • Ducut Sigala JL, Bottero V, Young DB, Shevchenko A, Mercurio F, Inder M et al. (2004). Activation of transcription factor NF-kappa B requires ELKS, an Ikappa B kinase regulatory subunit. Science 304: 1963–1967.

    Article  CAS  PubMed  Google Scholar 

  • Enari M, Sakahira H, Yokoyama H, Okawa K, Iwamatsu A, Nagata S . (1998). A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature 391: 43–50.

    Article  CAS  PubMed  Google Scholar 

  • Gao M, Labuda T, Xia Y, Gallagher E, Fang D, Liu YC et al. (2004). Jun turnover is controlled through JNK-dependent phosphorylation of the E3 ligase Itch. Science 306: 271–275.

    Article  CAS  PubMed  Google Scholar 

  • Ghosh S, Karin M . (2002). Missing pieces in the NF-κB puzzle. Cell 109: S81–S96.

    Article  CAS  PubMed  Google Scholar 

  • Ghosh S, May MJ, Kopp EB . (1998). NF-κB and Rel proteins: evolutionarily conserved mediators of immune responses. Annu Rev Immunol 16: 225–260.

    Article  CAS  PubMed  Google Scholar 

  • He H, Li HL, Lin A, Gottlieb RA . (1999). Activation of the JNK pathway is important for cardiomyocyte death in response to simulated ischemia. Cell Death Differ 6: 987–991.

    Article  CAS  PubMed  Google Scholar 

  • Herrlich P, Blattner C, Knebel A, Bender K, Rahmsdorf HJ . (1997). Nuclear and non-nuclear targets of genotoxic agents in the induction of gene expression. Shared principles in yeast, rodents, man and plants. Biol Chem 378: 1217–1229.

    CAS  PubMed  Google Scholar 

  • Hibi M, Lin A, Smeal T, Minden A, Karin M . (1993). Identification of an oncoprotein- and UV-responsive protein kinase that binds and potentiates the c-Jun activation domain. Genes Dev 7: 2135–2148.

    Article  CAS  PubMed  Google Scholar 

  • Hirosumi J, Tuncman G, Chang L, Görgün CZ, Uysal KT, Maeda K et al. (2002). A central role for JNK in obesity and insulin resistance. Nature 420: 333–336.

    Article  CAS  PubMed  Google Scholar 

  • Hutchison M, Berman KS, Cobb MH . (1998). Isolation of TAO1, a protein kinase that activates MEKs in stress-activated protein kinase cascade. J Biol Chem 273: 28625–28632.

    Article  CAS  PubMed  Google Scholar 

  • Ichijo H, Nishida E, Irie K, ten Dijke P, Saitoh M, Moriguchi T et al. (1997). Induction of apoptosis by ASK1 a mammalian MAPKKK that activates SAPK/JNK and p38 signaling pathways. Science 275: 90–94.

    Article  CAS  PubMed  Google Scholar 

  • Ito M, Yoshioka K, Akechi M, Yamashita S, Takamatsu N, Sugiyama K et al. (1999). JSAP1, a novel jun N-terminal protein kinase (JNK)-binding protein that functions as a Scaffold factor in the JNK signaling pathway. Mol Cell Biol 19: 7539–7548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamata H, Honda S, Maeda S, Chang L, Hirata H, Karin M . (2005). Reactive oxygen species promote TNF-α-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases. Cell 120: 649–661.

    Article  CAS  PubMed  Google Scholar 

  • Kasibhatla S, Brunner T, Genestier L, Echeverri LF, Mahboubi A, Green DR . (1998). DNA damaging agents induce expression of Fas ligand and subsequent apoptosis in T lymphocytes via the activation of NF-kappa B and AP-1. Mol Cell 1: 543–551.

    Article  CAS  PubMed  Google Scholar 

  • Karin M . (1995). The regulation of AP-1 activity by mitogen-activated protein kinases. J Biol Chem 270: 16483–16486.

    Article  CAS  PubMed  Google Scholar 

  • Karin M . (2006). Nuclear factor-kappa B in cancer development and progression. Nature 441: 431–436.

    CAS  PubMed  Google Scholar 

  • Karin M, Ben-Neriah Y . (2000). Phosphorylation meets ubiquitination: the control of NF-κB activity. Annu Rev Immunol 18: 621–663.

    Article  CAS  PubMed  Google Scholar 

  • Karin M, Lin A . (2002). NF-κB at the crossroad of life and death. Nat Immunol 3: 221–227.

    Article  CAS  PubMed  Google Scholar 

  • Kato Jr T, Delhase M, Hoffman A, Karin M . (2003). CK2 is a C-terminal IκB kinase responsible for NF-κB activation during the UV response. Mol Cell 12: 829–839.

    Article  CAS  PubMed  Google Scholar 

  • Khelifi AF, D'Alcontres MS, Salomoni P . (2005). Daxx is required for stress-induced cell death and JNK activation. Cell Death Differ 12: 724–733.

    Article  CAS  PubMed  Google Scholar 

  • Lee SA, Dritschilo A, Jung M . (1998). Impaired ionizing radiation-induced activation of a nuclear signal essential for phosphorylation of c-Jun by dually phosphorylated c-Jun amino-terminal kinases in ataxia telangiectasia fibroblasts. J Biol Chem 273: 32889–32894.

    Article  CAS  PubMed  Google Scholar 

  • Lei K, Davis RJ . (2003). JNK phosphorylation of Bim-related members of the Bcl2 family induces Bax-dependent apoptosis. Proc Natl Acad Sci USA 100: 2432–2437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li N, Karin M . (1998). Ionizing radiation and short wavelength UV activate NF-κB through two distinct mechanisms. Proc Natl Acad Sci USA 95: 13012–13017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Q, Van Antwerp D, Mercurio F, Lee KF, Verma IM . (1999a). Severe liver degeneration in mice lacking the IκB kinase 2 gene. Science 284: 321–325.

    Article  CAS  PubMed  Google Scholar 

  • Li ZW, Chu W, Hu Y, Delhase M, Deerinck T, Ellisman M et al. (1999b). The IKKβ subunit of IκB kinase (IKK) is essential for nuclear factor κB activation and prevention of apoptosis. J Exp Med 189: 1839–1845.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin A . (2003). Activation of the JNK signaling pathway: breaking the brake on apoptosis. BioEssays 25: 17–24.

    Article  PubMed  CAS  Google Scholar 

  • Lin A (ed). (2006). The JNK Signaling Pathway. Landes Bioscience: TX.

    Book  Google Scholar 

  • Lin A, Karin M . (2003). NF-κB in cancer: a marked target. Semin Cancer Biol 13: 107–114.

    Article  CAS  PubMed  Google Scholar 

  • Lin A, Minden A, Martinetto H, Claret FX, Lange-Carter C, Mercurio F et al. (1995). Identification of a dual specificity kinase that activates the Jun kinases and p38-Mpk2. Science 268: 286–290.

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Minemoto Y, Lin A . (2004). JNK1, but not JNK2, is essential for TNF-α-induced c-Jun kinase activation and apoptosis. Mol Cell Biol 24: 10844–10856.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Yang D, Minemoto Y, Leitges M, Rosner MR, Lin A . (2006). NF-κB via PKCδ promotes JNK activation by UV. Molecular Cell 21: 467–480.

    Article  CAS  PubMed  Google Scholar 

  • Liu ZG, Hsu H, Goeddel DV, Karin M . (1996). Dissection of TNF receptor 1 effector functions: JNK activation is not linked to apoptosis while NF-kappa B activation prevents cell death. Cell 87: 565–576.

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Bergami P, Habelhah H, Bhoumik A, Zhang W, Wang LH, Ronai Z . (2006). RACK1 mediates activation of JNK by protein kinase C. Mol Cell 19: 309–320.

    Article  CAS  Google Scholar 

  • Lu C, Zhu F, Cho YY, Tang F, Zykova T, Ma WY et al. (2006). Cell apoptosis: requirement of H2AX in DNA ladder formation, but not for the activation of caspase-3. Mol Cell 23: 121–132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu X, Nemoto S, Lin A . (1997). Identification of c-Jun NH2-terminal protein kinase (JNK)-activating kinase 2 as an activator of JNK but not p38. J Biol Chem 272: 24751–24754.

    Article  CAS  PubMed  Google Scholar 

  • Madrid LV, Wang CY, Guttridge DC, Schottelius AJG, Albert S, Baldwin Jr AS et al. (2000). Akt suppresses apoptosis by stimulating the transactivation potential of the RelA/p65 subunit of NF-κB. Mol Cell Biol 20: 1626–1638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maeda S, Chang L, Li Z-W, Luo J-L, Leffert H, Karin M . (2003). IKKβ is required for prevention of apoptosis mediated by cell bound but not by circulating TNFα. Immunity 19: 725–737.

    Article  CAS  PubMed  Google Scholar 

  • Maeda S, Kamata H, Luo JL, Leffert H, Karin M . (2005). IKKbeta couples hepatocyte death to cytokine-driven compensatory proliferation that promotes chemical hepatocarcinogenesis. Cell 121: 977–990.

    Article  CAS  PubMed  Google Scholar 

  • McDonald PH, Chow CW, Miller WE, Laporte SA, Field ME et al. (2000). Beta-arrestin 2: a receptor-regulated MAPK scaffold for the activation of JNK3. Science 290: 1574–1577.

    Article  CAS  PubMed  Google Scholar 

  • Micheau O, Tschopp J . (2003). Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell 114: 181–190.

    Article  CAS  PubMed  Google Scholar 

  • Natoli G, Costanzo A, Ianni A, Templeton DJ, Woodgett JR, Balsano C et al. (1997). Activation of SAPK/JNK by TNF receptor 1 through a noncytotoxic TRAF2-dependent pathway. Science 275: 200–203.

    Article  CAS  PubMed  Google Scholar 

  • Nemoto S, Sheng Z, Lin A . (1998). Opposing effects of Jun kinase and p38 mitogen-activated protein kinases on cardiomyocyte hypertrophy. Mol Cell Biol 18: 3518–3526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nijhawan D, Fang M, Traer E, Zhong Q, Gao W, Du F et al. (2003). Elimination of Mcl-1 is required for the initiation of apoptosis following ultraviolet irradiation. Genes Dev 17: 1475–1486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okazawa H, Estus S . (2002). The JNK/c-Jun cascade and Alzheimer's disease. Am J Alzheimers Dis Other Demen 17: 79–88.

    Article  PubMed  Google Scholar 

  • Pando MP, Verma IM . (2000). Signal-dependent and -independent degradation of free and NF-κB-bound IκBα. J Biol Chem 14: 21278–21286.

    Article  Google Scholar 

  • Papa S, Zazzeroni F, Bubici C, Jayawardnena S, Alvarez K, Matsuda S et al. (2004). Gadd45 beta mediates the NF-kappa B suppression of JNK signalling by targeting MKK7/JNKK2. Nat Cell Biol 6: 146–153.

    Article  CAS  PubMed  Google Scholar 

  • Park JM, Brady H, Ruocco MG, Sun H, Williams D, Lee SJ et al. (2004). Targeting of TAK1 by the NF-kappa B protein Relish regulates the JNK-mediated immune response in Drosophila. Genes Dev 18: 584–594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pham CG, Bubici C, Zazzeroni F, Papa S, Jones J, Alvarez K et al. (2004). Ferritin heavy chain upregulation by NF-kappa B inhibits TNFalpha-induced apoptosis by suppressing reactive oxygen species. Cell 119: 529–542.

    Article  CAS  PubMed  Google Scholar 

  • Pulverer BJ, Kyriakis JM, Avruch J, Nikolakaki E, Woodgett JR . (1991). Phosphorylation of c-jun mediated by MAP kinases. Nature 353: 670–674.

    Article  CAS  PubMed  Google Scholar 

  • Purcell NH, Yu C, He D, Xiang J, Paran N, DiDonato JA et al. (2001). Activation of NF-κB by hepatitis B virus X protein through an IκB kinase-independent mechanism. Am J Physiol 280: G669–G677.

    CAS  Google Scholar 

  • Reimold AM . (2002). TNFalpha as therapeutic target: new drugs, more applications. Curr Drug Targets Inflamm Allergy 1: 377–392.

    Article  CAS  PubMed  Google Scholar 

  • Rosette C, Karin M . (1996). Ultraviolet light and osmotic stress: activation of the JNK cascade through multiple growth factor and cytokine receptors. Science 274: 1194–1197.

    Article  CAS  PubMed  Google Scholar 

  • Sabapathy K, Hochedlinger K, Nam SY, Bauer A, Karin M, Wagner EF . (2004). Distinct roles for JNK1 and JNK2 in regulating JNK activity and c-Jun-dependent cell proliferation. Mol Cell 15: 834–844.

    Article  Google Scholar 

  • Sadoshima J, Montagne O, Wang Q, Yang G, Warden J, Liu J et al. (2002). The MEKK1-JNK pathway plays a protective role in pressure overload but does not mediate cardiac hypertrophy. J Clin Invest 110: 271–279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakon S, Xue X, Takekawa M, Sasazuki T, Okazaki T, Kojima Y et al. (2003). NF-kappa B inhibits TNF-induced accumulation of ROS that mediate prolonged MAPK activation and necrotic cell death. EMBO J 22: 3898–3909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salmeron A, Ahmad TB, Carlile GW, Pappin D, Narsimhan RP, Ley SC . (1996). Activation of MEK-1 and SEK-1 by Tpl-2 proto-oncoprotein, a novel MAP kinase kinase kinase. EMBO J 15: 817–826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanchez I, Hughes RT, Mayer BJ, Yee K, Woodgett JR, Avruch J et al. (1994). Role of SAPK/ERK kinase-1 in the stress-activated pathway regulating transcription factor c-Jun. Nature 372: 794–798.

    Article  CAS  PubMed  Google Scholar 

  • Shaulian E, Schreiber M, Piu F, Beeche M, Wagner EF, Karin M . (2000). The mammalian UV response: c-Jun induction is required for exit from p53-imposed growth arrest. Cell 103: 897–907.

    Article  CAS  PubMed  Google Scholar 

  • She QB, Chen N, Bode AM, Flavell RA, Dong Z . (2002). Deficiency of c-Jun-NH(2)-terminal kinase-1 in mice enhances skin tumor development by 12-O-tetradecanoylphorbol-13-acetate. Cancer Res 62: 1343–1348.

    CAS  PubMed  Google Scholar 

  • Shibuya H, Yamaguchi K, Shirakabe K, Tonegawa A, Gotoh Y, Ueno N et al. (1996). TAB1: an activator of the TAK1 MAPKKK in TGF-beta signal transduction. Science 272: 1179–1182.

    Article  CAS  PubMed  Google Scholar 

  • Siebenlist U, Franzoso G, Brown K . (1994). Structure, regulation and function of NF-κB. Annu Rev Cell Biol 10: 405–455.

    Article  CAS  PubMed  Google Scholar 

  • Smeal T, Binetruy B, Mercola DA, Birrer M, Karin M . (1991). Oncogenic and transcriptional cooperation with Ha-Ras requires phosphorylation of c-Jun on serines 63 and 73. Nature 354: 494–496.

    Article  CAS  PubMed  Google Scholar 

  • Tanaka M, Fuentes ME, Yamaguchi K, Durnin MH, Dalrymple SA, Hardy KL et al. (1999). Embryonic lethality, liver degeneration, and impaired NF-κB activation in IKKβ-deficient mice. Immunity 10: 421–429.

    Article  CAS  PubMed  Google Scholar 

  • Tang F, Tang G, Xiang J, Dai Q, Rosner MR, Lin A . (2002). Absence of NF-κB-mediated inhibition of c-Jun N-terminal kinase activation contributes to tumor necrosis factor alpha-induced apoptosis. Mol Cell Biol 22: 8571–8579.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang G, Minemoto Y, Dibling B, Purcell NH, Li Z, Karin M et al. (2001). Inhibition of JNK activation through NF-κB target genes. Nature 414: 313–317.

    Article  CAS  PubMed  Google Scholar 

  • Thanos D, Maniatis T . (1995). Nf-κb: a lesson in family values. Cell 80: 529–532.

    Article  CAS  PubMed  Google Scholar 

  • Tibbles LA, Ing YL, Kiefer F, Chan J, Iscove N, Woodgett JR et al. (1996). MLK-3 activates the SAPK/JNK and p38/RK pathways via SEK1 and MKK3/6. EMBO J 15: 7026–7035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tournier C, Hess P, Yang DD, Xu J, Turner TK, Nimnual A et al. (2000). Requirement of JNK for stress-induced activation of the cytochrome c-mediated death pathway. Science 288: 870–874.

    Article  CAS  PubMed  Google Scholar 

  • Tournier C, Whitmarsh AJ, Cavanagh J, Barrett T, Davis RJ . (1997). Mitogen-activated protein kinase kinase 7 is an activator of the c-Jun NH2-terminal kinase. Proc Natl Acad Sci USA 94: 7337–7342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uehara T, Bennett B, Sakata S, Satoh Y, Bilter G, Westwick J et al. (2005). JNK mediates hepatic ischemia reperfusion injury. J Hepatol 42: 850–859.

    Article  CAS  PubMed  Google Scholar 

  • Van Antwerp DJ, Martin SJ, Kafri T, Green DR, Verma IM . (1996). Suppression of TNF-α-induced apoptosis by NF-κB. Science 274: 787–789.

    Article  CAS  PubMed  Google Scholar 

  • Verheij M, Bose R, Lin XH, Yao B, Jarvis WD, Grants S et al. (1996). Requirement for ceramide-initiated SAPK/JNK signalling in stress-induced apoptosis. Nature 380: 75–79.

    Article  CAS  PubMed  Google Scholar 

  • Verma IM, Stevenson JK, Schwarz EM, Van Antwerp D, Miyamoto S . (1995). Rel/NF-κB/IκB family: intimate tales of association and dissociation. Genes Dev 9: 2723–2735.

    Article  CAS  PubMed  Google Scholar 

  • Whitmarsh AJ, Cavanagh J, Tournier C, Yasuda J, Davis RJ . (1998). A mammalian scaffold complex that selectively mediates MAP kinase activation. Science 281: 1671–1674.

    Article  CAS  PubMed  Google Scholar 

  • Wisdom R, Jonhson RS, Moore C . (1999). c-Jun regulates cell cycle progression and apoptosis by distinct mechanisms. EMBO J 18: 188–197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu CJ, Conze DB, Li X, Ying SX, Hanover JA, Ashwell JD . (2005). TNF-alpha induced c-IAP1/TRAF2 complex translocation to a Ubc6-containing compartment and TRAF2 ubiquitination. EMBO J 24: 1886–1898.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia XG, Harding T, Weller M, Bieneman A, Uney JB, Schulz JB . (2001). Gene transfer of the JNK interacting protein-1 protects dopaminergic neurons in the MPTP model of Parkinson's disease. Proc Natl Acad Sci USA 98: 10433–10438.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia Y, Makris C, Su B, Li E, Yang J, Nemerow GR et al. (2000). MEK kinase 1 is critically required for c-Jun N-terminal kinase activation by proinflammatory stimuli and growth factor-induced cell migration. Proc Natl Acad Sci USA 97: 5243–5248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu C, Minemoto Y, Zhang J, Liu J, Tang F, Bui TN et al. (2004). JNK suppresses apoptosis via phosphorylation of the proapoptotic Bcl-2 family protein BAD. Mol Cell 13: 329–340.

    Article  CAS  PubMed  Google Scholar 

  • Yujiri T, Sather S, Fanger GR, Johnson GL . (1998). Role of MEKK1 in cell survival and activation of JNK and ERK pathways defined by targeted gene disruption. Science 282: 1911–1914.

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Bui T, Xiang J, Lin A . (2006). cAMP Inhibits p38 Activation via CREB-induced Dynein Light Chain. Mol Cell Biol 26: 1223–1234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng C, Xiang J, Hunter T, Lin A . (1999). The JNKK2-JNK1 fusion protein acts as a constitutively active c-Jun kinase that stimulates c-Jun transcription activity. J Biol Chem 274: 28966–28971.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is partially supported by grants from the National Institutes of Health. We apologize to the authors for not being able to directly cite their work due to the space constraints.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Lin.

Additional information

Annning Lin would like to dedicate this review in memory of his father, Jun Lin, who passed away due to heart attack in Nanjing, China, on 28 November 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, J., Lin, A. Wiring the cell signaling circuitry by the NF-κB and JNK1 crosstalk and its applications in human diseases. Oncogene 26, 3267–3278 (2007). https://doi.org/10.1038/sj.onc.1210417

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210417

Keywords

This article is cited by

Search

Quick links