Semin Liver Dis 2013; 33(04): 330-342
DOI: 10.1055/s-0033-1358520
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Bile Acid-Mediated Control of Liver Triglycerides

Claudia Fuchs
1   Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Hans Popper Laboratory of Molecular Hepatology, Medical University of Vienna, Vienna, Austria
,
Thierry Claudel
1   Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Hans Popper Laboratory of Molecular Hepatology, Medical University of Vienna, Vienna, Austria
,
Michael Trauner
1   Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Hans Popper Laboratory of Molecular Hepatology, Medical University of Vienna, Vienna, Austria
› Author Affiliations
Further Information

Publication History

Publication Date:
12 November 2013 (online)

Abstract

Bile acids (BAs) are steroidal molecules generated in the liver by cholesterol oxidation. Beside their well-established role in lipid absorption and cholesterol homeostasis, they function as signaling molecules and activate dedicated BA receptors such as the farnesoid X receptor (FXR) and the G-protein coupled receptor TGR5. Through activation of downstream signaling pathways of these key receptors, BAs regulate not only their own synthesis and enterohepatic circulation, but also impact on hepatic lipid, glucose, and energy homeostasis. Therefore, BA-regulated signaling pathways have emerged as attractive targets for understanding the regulation of hepatic triglyceride metabolism in health and disease and treating fatty liver disease and associated metabolic disorders.

 
  • References

  • 1 Trauner M, Boyer JL. Bile salt transporters: molecular characterization, function, and regulation. Physiol Rev 2003; 83 (2) 633-671
  • 2 Kullak-Ublick GA, Beuers U, Paumgartner G. Hepatobiliary transport. J Hepatol 2000; 32 (1, Suppl) 3-18
  • 3 Hagenbuch B, Meier PJ. Molecular cloning, chromosomal localization, and functional characterization of a human liver Na+/bile acid cotransporter. J Clin Invest 1994; 93 (3) 1326-1331
  • 4 Kullak-Ublick GA, Hagenbuch B, Stieger B, Wolkoff AW, Meier PJ. Functional characterization of the basolateral rat liver organic anion transporting polypeptide. Hepatology 1994; 20 (2) 411-416
  • 5 Hofmann AF. The continuing importance of bile acids in liver and intestinal disease. Arch Intern Med 1999; 159 (22) 2647-2658
  • 6 Russell DW. The enzymes, regulation, and genetics of bile acid synthesis. Annu Rev Biochem 2003; 72: 137-174
  • 7 Leiss O, von Bergmann K. Different effects of chenodeoxycholic acid and ursodeoxycholic acid on serum lipoprotein concentrations in patients with radiolucent gallstones. Scand J Gastroenterol 1982; 17 (5) 587-592
  • 8 Duane WC. Abnormal bile acid absorption in familial hypertriglyceridemia. J Lipid Res 1995; 36 (1) 96-107
  • 9 Duane WC, Hartich LA, Bartman AE, Ho SB. Diminished gene expression of ileal apical sodium bile acid transporter explains impaired absorption of bile acid in patients with hypertriglyceridemia. J Lipid Res 2000; 41 (9) 1384-1389
  • 10 Angelin B. 1994 Mack-Forster Award Lecture. Review. Studies on the regulation of hepatic cholesterol metabolism in humans. Eur J Clin Invest 1995; 25 (4) 215-224
  • 11 Angelin B, Einarsson K, Hellström K, Leijd B. Effects of cholestyramine and chenodeoxycholic acid on the metabolism of endogenous triglyceride in hyperlipoproteinemia. J Lipid Res 1978; 19 (8) 1017-1024
  • 12 Mölgaard J, von Schenck H, Olsson AG. Comparative effects of simvastatin and cholestyramine in treatment of patients with hypercholesterolaemia. Eur J Clin Pharmacol 1989; 36 (5) 455-460
  • 13 Buchwald H, Varco RL, Matts JP , et al. Effect of partial ileal bypass surgery on mortality and morbidity from coronary heart disease in patients with hypercholesterolemia. Report of the Program on the Surgical Control of the Hyperlipidemias (POSCH). N Engl J Med 1990; 323 (14) 946-955
  • 14 Donnelly KL, Smith CI, Schwarzenberg SJ, Jessurun J, Boldt MD, Parks EJ. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J Clin Invest 2005; 115 (5) 1343-1351
  • 15 Cohen JC, Horton JD, Hobbs HH. Human fatty liver disease: old questions and new insights. Science 2011; 332 (6037) 1519-1523
  • 16 Horton JD, Goldstein JL, Brown MS. SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest 2002; 109 (9) 1125-1131
  • 17 Nguyen P, Leray V, Diez M , et al. Liver lipid metabolism. J Anim Physiol Anim Nutr (Berl) 2008; 92 (3) 272-283
  • 18 Tiwari S, Siddiqi SA. Intracellular trafficking and secretion of VLDL. Arterioscler Thromb Vasc Biol 2012; 32 (5) 1079-1086
  • 19 Houten SM, Watanabe M, Auwerx J. Endocrine functions of bile acids. EMBO J 2006; 25 (7) 1419-1425
  • 20 Hylemon PB, Zhou H, Pandak WM, Ren S, Gil G, Dent P. Bile acids as regulatory molecules. J Lipid Res 2009; 50 (8) 1509-1520
  • 21 Wagner M, Trauner M. Transcriptional regulation of hepatobiliary transport systems in health and disease: implications for a rationale approach to the treatment of intrahepatic cholestasis. Ann Hepatol 2005; 4 (2) 77-99
  • 22 Claudel T, Staels B, Kuipers F. The farnesoid X receptor: a molecular link between bile acid and lipid and glucose metabolism. Arterioscler Thromb Vasc Biol 2005; 25 (10) 2020-2030
  • 23 Parks DJ, Blanchard SG, Bledsoe RK , et al. Bile acids: natural ligands for an orphan nuclear receptor. Science 1999; 284 (5418) 1365-1368
  • 24 Makishima M, Okamoto AY, Repa JJ , et al. Identification of a nuclear receptor for bile acids. Science 1999; 284 (5418) 1362-1365
  • 25 Wang H, Chen J, Hollister K, Sowers LC, Forman BM. Endogenous bile acids are ligands for the nuclear receptor FXR/BAR. Mol Cell 1999; 3 (5) 543-553
  • 26 Sayin SI, Wahlström A, Felin J , et al. Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist. Cell Metab 2013; 17 (2) 225-235
  • 27 Chiang JY. Bile acid regulation of gene expression: roles of nuclear hormone receptors. Endocr Rev 2002; 23 (4) 443-463
  • 28 Chiang JY. Bile acids: regulation of synthesis. J Lipid Res 2009; 50 (10) 1955-1966
  • 29 Watanabe M, Houten SM, Mataki C , et al. Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature 2006; 439 (7075) 484-489
  • 30 Thomas C, Pellicciari R, Pruzanski M, Auwerx J, Schoonjans K. Targeting bile-acid signalling for metabolic diseases. Nat Rev Drug Discov 2008; 7 (8) 678-693
  • 31 Lefebvre P, Cariou B, Lien F, Kuipers F, Staels B. Role of bile acids and bile acid receptors in metabolic regulation. Physiol Rev 2009; 89 (1) 147-191
  • 32 Chiang JY. Nuclear receptor regulation of lipid metabolism: potential therapeutics for dyslipidemia, diabetes, and chronic heart and liver diseases. Curr Opin Investig Drugs 2005; 6 (10) 994-1001
  • 33 Claudel T, Sturm E, Duez H , et al. Bile acid-activated nuclear receptor FXR suppresses apolipoprotein A-I transcription via a negative FXR response element. J Clin Invest 2002; 109 (7) 961-971
  • 34 Barbier O, Torra IP, Sirvent A , et al. FXR induces the UGT2B4 enzyme in hepatocytes: a potential mechanism of negative feedback control of FXR activity. Gastroenterology 2003; 124 (7) 1926-1940
  • 35 Laffitte BA, Kast HR, Nguyen CM, Zavacki AM, Moore DD, Edwards PA. Identification of the DNA binding specificity and potential target genes for the farnesoid X-activated receptor. J Biol Chem 2000; 275 (14) 10638-10647
  • 36 Claudel T, Inoue Y, Barbier O , et al. Farnesoid X receptor agonists suppress hepatic apolipoprotein CIII expression. Gastroenterology 2003; 125 (2) 544-555
  • 37 Zollner G, Marschall HU, Wagner M, Trauner M. Role of nuclear receptors in the adaptive response to bile acids and cholestasis: pathogenetic and therapeutic considerations. Mol Pharm 2006; 3 (3) 231-251
  • 38 Eloranta JJ, Kullak-Ublick GA. Coordinate transcriptional regulation of bile acid homeostasis and drug metabolism. Arch Biochem Biophys 2005; 433 (2) 397-412
  • 39 Landrier JF, Eloranta JJ, Vavricka SR, Kullak-Ublick GA. The nuclear receptor for bile acids, FXR, transactivates human organic solute transporter-alpha and -beta genes. Am J Physiol Gastrointest Liver Physiol 2006; 290 (3) G476-G485
  • 40 Lee H, Zhang Y, Lee FY, Nelson SF, Gonzalez FJ, Edwards PA. FXR regulates organic solute transporters alpha and beta in the adrenal gland, kidney, and intestine. J Lipid Res 2006; 47 (1) 201-214
  • 41 Holt JA, Luo G, Billin AN , et al. Definition of a novel growth factor-dependent signal cascade for the suppression of bile acid biosynthesis. Genes Dev 2003; 17 (13) 1581-1591
  • 42 Inagaki T, Choi M, Moschetta A , et al. Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis. Cell Metab 2005; 2 (4) 217-225
  • 43 Sinal CJ, Tohkin M, Miyata M, Ward JM, Lambert G, Gonzalez FJ. Targeted disruption of the nuclear receptor FXR/BAR impairs bile acid and lipid homeostasis. Cell 2000; 102 (6) 731-744
  • 44 Watanabe M, Houten SM, Wang L , et al. Bile acids lower triglyceride levels via a pathway involving FXR, SHP, and SREBP-1c. J Clin Invest 2004; 113 (10) 1408-1418
  • 45 Pineda Torra I, Claudel T, Duval C, Kosykh V, Fruchart JC, Staels B. Bile acids induce the expression of the human peroxisome proliferator-activated receptor alpha gene via activation of the farnesoid X receptor. Mol Endocrinol 2003; 17 (2) 259-272
  • 46 Hirokane H, Nakahara M, Tachibana S, Shimizu M, Sato R. Bile acid reduces the secretion of very low density lipoprotein by repressing microsomal triglyceride transfer protein gene expression mediated by hepatocyte nuclear factor-4. J Biol Chem 2004; 279 (44) 45685-45692
  • 47 Kast HR, Nguyen CM, Sinal CJ , et al. Farnesoid X-activated receptor induces apolipoprotein C-II transcription: a molecular mechanism linking plasma triglyceride levels to bile acids. Mol Endocrinol 2001; 15 (10) 1720-1728
  • 48 Prieur X, Coste H, Rodriguez JC. The human apolipoprotein AV gene is regulated by peroxisome proliferator-activated receptor-alpha and contains a novel farnesoid X-activated receptor response element. J Biol Chem 2003; 278 (28) 25468-25480
  • 49 Lambert G, Amar MJ, Guo G, Brewer Jr HB, Gonzalez FJ, Sinal CJ. The farnesoid X-receptor is an essential regulator of cholesterol homeostasis. J Biol Chem 2003; 278 (4) 2563-2570
  • 50 Rizzo G, Disante M, Mencarelli A , et al. The farnesoid X receptor promotes adipocyte differentiation and regulates adipose cell function in vivo. Mol Pharmacol 2006; 70 (4) 1164-1173
  • 51 Abdelkarim M, Caron S, Duhem C , et al. The farnesoid X receptor regulates adipocyte differentiation and function by promoting peroxisome proliferator-activated receptor-gamma and interfering with the Wnt/beta-catenin pathways. J Biol Chem 2010; 285 (47) 36759-36767
  • 52 Ma K, Saha PK, Chan L, Moore DD. Farnesoid X receptor is essential for normal glucose homeostasis. J Clin Invest 2006; 116 (4) 1102-1109
  • 53 Düfer M, Hörth K, Wagner R , et al. Bile acids acutely stimulate insulin secretion of mouse β-cells via farnesoid X receptor activation and K(ATP) channel inhibition. Diabetes 2012; 61 (6) 1479-1489
  • 54 Stayrook KR, Bramlett KS, Savkur RS , et al. Regulation of carbohydrate metabolism by the farnesoid X receptor. Endocrinology 2005; 146 (3) 984-991
  • 55 Zhang Y, Lee FY, Barrera G , et al. Activation of the nuclear receptor FXR improves hyperglycemia and hyperlipidemia in diabetic mice. Proc Natl Acad Sci U S A 2006; 103 (4) 1006-1011
  • 56 Kir S, Beddow SA, Samuel VT , et al. FGF19 as a postprandial, insulin-independent activator of hepatic protein and glycogen synthesis. Science 2011; 331 (6024) 1621-1624
  • 57 Cariou B, van Harmelen K, Duran-Sandoval D , et al. The farnesoid X receptor modulates adiposity and peripheral insulin sensitivity in mice. J Biol Chem 2006; 281 (16) 11039-11049
  • 58 Cariou B, van Harmelen K, Duran-Sandoval D , et al. Transient impairment of the adaptive response to fasting in FXR-deficient mice. FEBS Lett 2005; 579 (19) 4076-4080
  • 59 Nishimura T, Utsunomiya Y, Hoshikawa M, Ohuchi H, Itoh N. Structure and expression of a novel human FGF, FGF-19, expressed in the fetal brain. Biochim Biophys Acta 1999; 1444 (1) 148-151
  • 60 Tomlinson E, Fu L, John L , et al. Transgenic mice expressing human fibroblast growth factor-19 display increased metabolic rate and decreased adiposity. Endocrinology 2002; 143 (5) 1741-1747
  • 61 Ha J, Lee JK, Kim KS, Witters LA, Kim KH. Cloning of human acetyl-CoA carboxylase-beta and its unique features. Proc Natl Acad Sci U S A 1996; 93 (21) 11466-11470
  • 62 Abu-Elheiga L, Matzuk MM, Abo-Hashema KA, Wakil SJ. Continuous fatty acid oxidation and reduced fat storage in mice lacking acetyl-CoA carboxylase 2. Science 2001; 291 (5513) 2613-2616
  • 63 Huang X, Yang C, Luo Y, Jin C, Wang F, McKeehan WL. FGFR4 prevents hyperlipidemia and insulin resistance but underlies high-fat diet induced fatty liver. Diabetes 2007; 56 (10) 2501-2510
  • 64 Ntambi JM, Miyazaki M, Stoehr JP , et al. Loss of stearoyl-CoA desaturase-1 function protects mice against adiposity. Proc Natl Acad Sci U S A 2002; 99 (17) 11482-11486
  • 65 Lundåsen T, Gälman C, Angelin B, Rudling M. Circulating intestinal fibroblast growth factor 19 has a pronounced diurnal variation and modulates hepatic bile acid synthesis in man. J Intern Med 2006; 260 (6) 530-536
  • 66 Li T, Chiang JY. Bile acid signaling in liver metabolism and diseases. J Lipids 2012; 2012: 754067
  • 67 Schreuder TC, Marsman HA, Lenicek M , et al. The hepatic response to FGF19 is impaired in patients with nonalcoholic fatty liver disease and insulin resistance. Am J Physiol Gastrointest Liver Physiol 2010; 298 (3) G440-G445
  • 68 Bange J, Prechtl D, Cheburkin Y , et al. Cancer progression and tumor cell motility are associated with the FGFR4 Arg(388) allele. Cancer Res 2002; 62 (3) 840-847
  • 69 Huang X, Yu C, Jin C , et al. Ectopic activity of fibroblast growth factor receptor 1 in hepatocytes accelerates hepatocarcinogenesis by driving proliferation and vascular endothelial growth factor-induced angiogenesis. Cancer Res 2006; 66 (3) 1481-1490
  • 70 Nishimura T, Nakatake Y, Konishi M, Itoh N. Identification of a novel FGF, FGF-21, preferentially expressed in the liver. Biochim Biophys Acta 2000; 1492 (1) 203-206
  • 71 Kurosu H, Choi M, Ogawa Y , et al. Tissue-specific expression of betaKlotho and fibroblast growth factor (FGF) receptor isoforms determines metabolic activity of FGF19 and FGF21. J Biol Chem 2007; 282 (37) 26687-26695
  • 72 Ogawa Y, Kurosu H, Yamamoto M , et al. BetaKlotho is required for metabolic activity of fibroblast growth factor 21. Proc Natl Acad Sci U S A 2007; 104 (18) 7432-7437
  • 73 Suzuki M, Uehara Y, Motomura-Matsuzaka K , et al. betaKlotho is required for fibroblast growth factor (FGF) 21 signaling through FGF receptor (FGFR) 1c and FGFR3c. Mol Endocrinol 2008; 22 (4) 1006-1014
  • 74 Kharitonenkov A, Shiyanova TL, Koester A , et al. FGF-21 as a novel metabolic regulator. J Clin Invest 2005; 115 (6) 1627-1635
  • 75 Huang X, Yu C, Jin C , et al. Forced expression of hepatocyte-specific fibroblast growth factor 21 delays initiation of chemically induced hepatocarcinogenesis. Mol Carcinog 2006; 45 (12) 934-942
  • 76 Wente W, Efanov AM, Brenner M , et al. Fibroblast growth factor-21 improves pancreatic beta-cell function and survival by activation of extracellular signal-regulated kinase 1/2 and Akt signaling pathways. Diabetes 2006; 55 (9) 2470-2478
  • 77 Badman MK, Pissios P, Kennedy AR, Koukos G, Flier JS, Maratos-Flier E. Hepatic fibroblast growth factor 21 is regulated by PPARalpha and is a key mediator of hepatic lipid metabolism in ketotic states. Cell Metab 2007; 5 (6) 426-437
  • 78 Inagaki T, Dutchak P, Zhao G , et al. Endocrine regulation of the fasting response by PPARalpha-mediated induction of fibroblast growth factor 21. Cell Metab 2007; 5 (6) 415-425
  • 79 Cyphert HA, Ge X, Kohan AB, Salati LM, Zhang Y, Hillgartner FB. Activation of the farnesoid X receptor induces hepatic expression and secretion of fibroblast growth factor 21. J Biol Chem 2012; 287 (30) 25123-25138
  • 80 Zhang X, Yeung DC, Karpisek M , et al. Serum FGF21 levels are increased in obesity and are independently associated with the metabolic syndrome in humans. Diabetes 2008; 57 (5) 1246-1253
  • 81 Chen WW, Li L, Yang GY , et al. Circulating FGF-21 levels in normal subjects and in newly diagnosed patients with type 2 diabetes mellitus. Exp Clin Endocrinol Diabetes 2008; 116 (1) 65-68
  • 82 Genet C, Strehle A, Schmidt C , et al. Structure-activity relationship study of betulinic acid, a novel and selective TGR5 agonist, and its synthetic derivatives: potential impact in diabetes. J Med Chem 2010; 53 (1) 178-190
  • 83 Kawamata Y, Fujii R, Hosoya M , et al. A G protein-coupled receptor responsive to bile acids. J Biol Chem 2003; 278 (11) 9435-9440
  • 84 Vassileva G, Golovko A, Markowitz L , et al. Targeted deletion of Gpbar1 protects mice from cholesterol gallstone formation. Biochem J 2006; 398 (3) 423-430
  • 85 Keitel V, Cupisti K, Ullmer C, Knoefel WT, Kubitz R, Häussinger D. The membrane-bound bile acid receptor TGR5 is localized in the epithelium of human gallbladders. Hepatology 2009; 50 (3) 861-870
  • 86 Maruyama T, Miyamoto Y, Nakamura T , et al. Identification of membrane-type receptor for bile acids (M-BAR). Biochem Biophys Res Commun 2002; 298 (5) 714-719
  • 87 Keitel V, Reinehr R, Gatsios P , et al. The G-protein coupled bile salt receptor TGR5 is expressed in liver sinusoidal endothelial cells. Hepatology 2007; 45 (3) 695-704
  • 88 Keitel V, Donner M, Winandy S, Kubitz R, Häussinger D. Expression and function of the bile acid receptor TGR5 in Kupffer cells. Biochem Biophys Res Commun 2008; 372 (1) 78-84
  • 89 Keitel V, Ullmer C, Häussinger D. The membrane-bound bile acid receptor TGR5 (Gpbar-1) is localized in the primary cilium of cholangiocytes. Biol Chem 2010; 391 (7) 785-789
  • 90 Nguyen A, Bouscarel B. Bile acids and signal transduction: role in glucose homeostasis. Cell Signal 2008; 20 (12) 2180-2197
  • 91 Fiorucci S, Mencarelli A, Palladino G, Cipriani S. Bile-acid-activated receptors: targeting TGR5 and farnesoid-X-receptor in lipid and glucose disorders. Trends Pharmacol Sci 2009; 30 (11) 570-580
  • 92 Drucker DJ, Philippe J, Mojsov S, Chick WL, Habener JF. Glucagon-like peptide I stimulates insulin gene expression and increases cyclic AMP levels in a rat islet cell line. Proc Natl Acad Sci U S A 1987; 84 (10) 3434-3438
  • 93 Kreymann B, Williams G, Ghatei MA, Bloom SR. Glucagon-like peptide-1 7-36: a physiological incretin in man. Lancet 1987; 2 (8571) 1300-1304
  • 94 Nakabayashi H, Nishizawa M, Nakagawa A, Takeda R, Niijima A. Vagal hepatopancreatic reflex effect evoked by intraportal appearance of tGLP-1. Am J Physiol 1996; 271 (5 Pt 1) E808-E813
  • 95 Holst JJ. The physiology of glucagon-like peptide 1. Physiol Rev 2007; 87 (4) 1409-1439
  • 96 Potthoff MJ, Potts A, He T , et al. Colesevelam suppresses hepatic glycogenolysis by TGR5-mediated induction of GLP-1 action in DIO mice. Am J Physiol Gastrointest Liver Physiol 2013; 304 (4) G371-G380
  • 97 Angulo P. Nonalcoholic fatty liver disease. N Engl J Med 2002; 346 (16) 1221-1231
  • 98 Targher G, Day CP, Bonora E. Risk of cardiovascular disease in patients with nonalcoholic fatty liver disease. N Engl J Med 2010; 363 (14) 1341-1350
  • 99 Sacks FM, Alaupovic P, Moye LA , et al. VLDL, apolipoproteins B, CIII, and E, and risk of recurrent coronary events in the Cholesterol and Recurrent Events (CARE) trial. Circulation 2000; 102 (16) 1886-1892
  • 100 Monsour Jr HP, Frenette CT, Wyne K. Fatty liver: a link to cardiovascular disease—its natural history, pathogenesis, and treatment. Methodist Debakey Cardiovasc J 2012; 8 (3) 21-25
  • 101 Neuschwander-Tetri BA. Hepatic lipotoxicity and the pathogenesis of nonalcoholic steatohepatitis: the central role of nontriglyceride fatty acid metabolites. Hepatology 2010; 52 (2) 774-788
  • 102 Unger RH, Clark GO, Scherer PE, Orci L. Lipid homeostasis, lipotoxicity and the metabolic syndrome. Biochim Biophys Acta 2010; 1801 (3) 209-214
  • 103 Zechner R, Zimmermann R, Eichmann TO , et al. FAT SIGNALS—lipases and lipolysis in lipid metabolism and signaling. Cell Metab 2012; 15 (3) 279-291
  • 104 Wang YD, Chen WD, Wang M, Yu D, Forman BM, Huang W. Farnesoid X receptor antagonizes nuclear factor kappaB in hepatic inflammatory response. Hepatology 2008; 48 (5) 1632-1643
  • 105 Huang J, Iqbal J, Saha PK , et al. Molecular characterization of the role of orphan receptor small heterodimer partner in development of fatty liver. Hepatology 2007; 46 (1) 147-157
  • 106 Wang YD, Chen WD, Moore DD, Huang W. FXR: a metabolic regulator and cell protector. Cell Res 2008; 18 (11) 1087-1095
  • 107 He N, Park K, Zhang Y, Huang J, Lu S, Wang L. Epigenetic inhibition of nuclear receptor small heterodimer partner is associated with and regulates hepatocellular carcinoma growth. Gastroenterology 2008; 134 (3) 793-802
  • 108 Trauner M. A little orphan runs to fat: the orphan receptor small heterodimer partner as a key player in the regulation of hepatic lipid metabolism. Hepatology 2007; 46 (1) 1-5
  • 109 Vassileva G, Hu W, Hoos L , et al. Gender-dependent effect of Gpbar1 genetic deletion on the metabolic profiles of diet-induced obese mice. J Endocrinol 2010; 205 (3) 225-232
  • 110 Thomas C, Gioiello A, Noriega L , et al. TGR5-mediated bile acid sensing controls glucose homeostasis. Cell Metab 2009; 10 (3) 167-177
  • 111 van der Poorten D, Samer CF, Ramezani-Moghadam M , et al. Hepatic fat loss in advanced nonalcoholic steatohepatitis: are alterations in serum adiponectin the cause?. Hepatology 2013; 57 (6) 2180-2188
  • 112 Meier Y, Pauli-Magnus C, Zanger UM , et al. Interindividual variability of canalicular ATP-binding-cassette (ABC)-transporter expression in human liver. Hepatology 2006; 44 (1) 62-74
  • 113 Andreotti G, Menashe I, Chen J , et al. Genetic determinants of serum lipid levels in Chinese subjects: a population-based study in Shanghai, China. Eur J Epidemiol 2009; 24 (12) 763-774
  • 114 Acalovschi M, Tirziu S, Chiorean E, Krawczyk M, Grünhage F, Lammert F. Common variants of ABCB4 and ABCB11 and plasma lipid levels: a study in sib pairs with gallstones, and controls. Lipids 2009; 44 (6) 521-526
  • 115 Krawczyk M, Rusticeanu M, Grunhage F, Lammert F. Body mass index in the general population is associated with the common p.A444V variant of the ABC transporter for bile salts. Hepatology 2009; 50 (4, Suppl): 1016A
  • 116 Iwata R, Baur K, Stieger B , et al; Swiss Hepatitis C Cohort Study Group. A common polymorphism in the ABCB11 gene is associated with advanced fibrosis in hepatitis C but not in non-alcoholic fatty liver disease. Clin Sci (Lond) 2011; 120 (7) 287-296
  • 117 Zhang Y, Li F, Patterson AD , et al. Abcb11 deficiency induces cholestasis coupled to impaired β-fatty acid oxidation in mice. J Biol Chem 2012; 287 (29) 24784-24794
  • 118 Takeuchi F, Katsuya T, Chakrewarthy S , et al. Common variants at the GCK, GCKR, G6PC2-ABCB11 and MTNR1B loci are associated with fasting glucose in two Asian populations. Diabetologia 2010; 53 (2) 299-308
  • 119 Rose CS, Grarup N, Krarup NT , et al. A variant in the G6PC2/ABCB11 locus is associated with increased fasting plasma glucose, increased basal hepatic glucose production and increased insulin release after oral and intravenous glucose loads. Diabetologia 2009; 52 (10) 2122-2129
  • 120 Ferré P, Foufelle F. A new role for a metabolic star: AMP-activated protein kinase stimulates fat absorption. Cell Metab 2011; 13 (1) 1-2
  • 121 Chopra AR, Kommagani R, Saha P , et al. Cellular energy depletion resets whole-body energy by promoting coactivator-mediated dietary fuel absorption. Cell Metab 2011; 13 (1) 35-43
  • 122 Hawley SA, Gadalla AE, Olsen GS, Hardie DG. The antidiabetic drug metformin activates the AMP-activated protein kinase cascade via an adenine nucleotide-independent mechanism. Diabetes 2002; 51 (8) 2420-2425
  • 123 Figge A, Lammert F, Paigen B , et al. Hepatic overexpression of murine Abcb11 increases hepatobiliary lipid secretion and reduces hepatic steatosis. J Biol Chem 2004; 279 (4) 2790-2799
  • 124 Sundaram SS, Whitington PF, Green RM. Steatohepatitis develops rapidly in transgenic mice overexpressing Abcb11 and fed a methionine-choline-deficient diet. Am J Physiol Gastrointest Liver Physiol 2005; 288 (6) G1321-G1327
  • 125 Li Z, Agellon LB, Allen TM , et al. The ratio of phosphatidylcholine to phosphatidylethanolamine influences membrane integrity and steatohepatitis. Cell Metab 2006; 3 (5) 321-331
  • 126 Fuchs C, Claudel T, Hallibasic E , et al Intrahepatic changes in bile acid composition protects bsep (abcb11) KO mice from hepatic inflammation in methionine choline deficient diet induced NASH. J Hepatol 2013; 58 (S1) S32
  • 127 Geier A, Dietrich CG, Grote T , et al. Characterization of organic anion transporter regulation, glutathione metabolism and bile formation in the obese Zucker rat. J Hepatol 2005; 43 (6) 1021-1030
  • 128 Pizarro M, Balasubramaniyan N, Solís N , et al. Bile secretory function in the obese Zucker rat: evidence of cholestasis and altered canalicular transport function. Gut 2004; 53 (12) 1837-1843
  • 129 Bechmann LP, Kocabayoglu P, Sowa JP , et al. Free fatty acids repress small heterodimer partner (SHP) activation and adiponectin counteracts bile acid-induced liver injury in superobese patients with nonalcoholic steatohepatitis. Hepatology 2013; 57 (4) 1394-1406
  • 130 Aron-Wisnewsky J, Gaborit B, Dutour A, Clement K. Gut microbiota and non-alcoholic fatty liver disease: new insights. Clin Microbiol Infect 2013; 19 (4) 338-348
  • 131 Drenick EJ, Fisler J, Johnson D. Hepatic steatosis after intestinal bypass—prevention and reversal by metronidazole, irrespective of protein-calorie malnutrition. Gastroenterology 1982; 82 (3) 535-548
  • 132 Tilg H, Moschen AR. Evolution of inflammation in nonalcoholic fatty liver disease: the multiple parallel hits hypothesis. Hepatology 2010; 52 (5) 1836-1846
  • 133 Inagaki T, Moschetta A, Lee YK , et al. Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor. Proc Natl Acad Sci U S A 2006; 103 (10) 3920-3925
  • 134 Neuschwander-Tetri BA. Lifestyle modification as the primary treatment of NASH. Clin Liver Dis 2009; 13 (4) 649-665
  • 135 Haedrich M, Dufour JF. UDCA for NASH: end of the story?. J Hepatol 2011; 54 (5) 856-858
  • 136 Paumgartner G, Beuers U. Ursodeoxycholic acid in cholestatic liver disease: mechanisms of action and therapeutic use revisited. Hepatology 2002; 36 (3) 525-531
  • 137 Ratziu V, de Ledinghen V, Oberti F , et al; FRESGUN. A randomized controlled trial of high-dose ursodesoxycholic acid for nonalcoholic steatohepatitis. J Hepatol 2011; 54 (5) 1011-1019
  • 138 Rodrigues CM, Fan G, Ma X, Kren BT, Steer CJ. A novel role for ursodeoxycholic acid in inhibiting apoptosis by modulating mitochondrial membrane perturbation. J Clin Invest 1998; 101 (12) 2790-2799
  • 139 Ozcan U, Yilmaz E, Ozcan L , et al. Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes. Science 2006; 313 (5790) 1137-1140
  • 140 Kars M, Yang L, Gregor MF , et al. Tauroursodeoxycholic acid may improve liver and muscle but not adipose tissue insulin sensitivity in obese men and women. Diabetes 2010; 59 (8) 1899-1905
  • 141 Lindor KD, Kowdley KV, Heathcote EJ , et al. Ursodeoxycholic acid for treatment of nonalcoholic steatohepatitis: results of a randomized trial. Hepatology 2004; 39 (3) 770-778
  • 142 Leuschner UF, Lindenthal B, Herrmann G , et al; NASH Study Group. High-dose ursodeoxycholic acid therapy for nonalcoholic steatohepatitis: a double-blind, randomized, placebo-controlled trial. Hepatology 2010; 52 (2) 472-479
  • 143 Marschall HU, Wagner M, Zollner G , et al. Combined rifampicin and ursodeoxycholic acid treatment does not amplify rifampicin effects on hepatic detoxification and transport systems in humans. Digestion 2012; 86 (3) 244-249
  • 144 Wagner M, Zollner G, Trauner M. Nuclear receptors in liver disease. Hepatology 2011; 53 (3) 1023-1034
  • 145 Fu L, John LM, Adams SH , et al. Fibroblast growth factor 19 increases metabolic rate and reverses dietary and leptin-deficient diabetes. Endocrinology 2004; 145 (6) 2594-2603
  • 146 Zhang S, Wang J, Liu Q, Harnish DC. Farnesoid X receptor agonist WAY-362450 attenuates liver inflammation and fibrosis in murine model of non-alcoholic steatohepatitis. J Hepatol 2009; 51 (2) 380-388
  • 147 Adorini L, Pruzanski M, Shapiro D. Farnesoid X receptor targeting to treat nonalcoholic steatohepatitis. Drug Discov Today 2012; 17 (17-18) 988-997
  • 148 Mudaliar S, Henry RR, Sanyal AJ , et al. Efficacy and safety of the farnesoid x receptor agonist obeticholic acid in patients with type 2 diabetes and nonalcoholic fatty liver disease. Gastroenterology 2013; 145 (3) 574 , e1
  • 149 Mencarelli A, Renga B, Distrutti E, Fiorucci S. Antiatherosclerotic effect of farnesoid X receptor. Am J Physiol Heart Circ Physiol 2009; 296 (2) H272-H281
  • 150 Hartman HB, Gardell SJ, Petucci CJ, Wang S, Krueger JA, Evans MJ. Activation of farnesoid X receptor prevents atherosclerotic lesion formation in LDLR-/- and apoE-/- mice. J Lipid Res 2009; 50 (6) 1090-1100
  • 151 Hambruch E, Miyazaki-Anzai S, Hahn U , et al. Synthetic farnesoid X receptor agonists induce high-density lipoprotein-mediated transhepatic cholesterol efflux in mice and monkeys and prevent atherosclerosis in cholesteryl ester transfer protein transgenic low-density lipoprotein receptor (-/-) mice. J Pharmacol Exp Ther 2012; 343 (3) 556-567
  • 152 Fuchs M. Non-alcoholic fatty liver disease: the bile acid-activated farnesoid x receptor as an emerging treatment target. J Lipids 2012; 2012: 934396
  • 153 Chennamsetty I, Claudel T, Kostner KM , et al. Farnesoid X receptor represses hepatic human APOA gene expression. J Clin Invest 2011; 121 (9) 3724-3734
  • 154 McMahan RH, Wang XX, Cheng LL , et al. Bile acid receptor activation modulates hepatic monocyte activity and improves nonalcoholic fatty liver disease. J Biol Chem 2013; 288 (17) 11761-11770
  • 155 Gordon S, Martinez FO. Alternative activation of macrophages: mechanism and functions. Immunity 2010; 32 (5) 593-604
  • 156 Garg A, Grundy SM. Cholestyramine therapy for dyslipidemia in non-insulin-dependent diabetes mellitus. A short-term, double-blind, crossover trial. Ann Intern Med 1994; 121 (6) 416-422
  • 157 Suzuki T, Oba K, Futami S , et al. Blood glucose-lowering activity of colestimide in patients with type 2 diabetes and hypercholesterolemia: a case-control study comparing colestimide with acarbose. J Nippon Med Sch 2006; 73 (5) 277-284
  • 158 Goldberg RB, Fonseca VA, Truitt KE, Jones MR. Efficacy and safety of colesevelam in patients with type 2 diabetes mellitus and inadequate glycemic control receiving insulin-based therapy. Arch Intern Med 2008; 168 (14) 1531-1540
  • 159 Schwartz SL, Lai YL, Xu J , et al. The effect of colesevelam hydrochloride on insulin sensitivity and secretion in patients with type 2 diabetes: a pilot study. Metab Syndr Relat Disord 2010; 8 (2) 179-188
  • 160 The Lipid Research Clinics Coronary Primary Prevention Trial results. II. The relationship of reduction in incidence of coronary heart disease to cholesterol lowering. JAMA 1984; 251 (3) 365-374
  • 161 The Lipid Research Clinics Coronary Primary Prevention Trial results. I. Reduction in incidence of coronary heart disease. JAMA 1984; 251 (3) 351-364
  • 162 Taniai M, Hashimoto E, Tobari M , et al. Treatment of nonalcoholic steatohepatitis with colestimide. Hepatol Res 2009; 39 (7) 685-693
  • 163 Le TA, Chen J, Changchien C , et al; San Diego Integrated NAFLD Research Consortium (SINC). Effect of colesevelam on liver fat quantified by magnetic resonance in nonalcoholic steatohepatitis: a randomized controlled trial. Hepatology 2012; 56 (3) 922-932
  • 164 Nakatani H, Kasama K, Oshiro T, Watanabe M, Hirose H, Itoh H. Serum bile acid along with plasma incretins and serum high-molecular weight adiponectin levels are increased after bariatric surgery. Metabolism 2009; 58 (10) 1400-1407
  • 165 Katsuma S, Hirasawa A, Tsujimoto G. Bile acids promote glucagon-like peptide-1 secretion through TGR5 in a murine enteroendocrine cell line STC-1. Biochem Biophys Res Commun 2005; 329 (1) 386-390