Skip to main content

Advertisement

Log in

Hepatic Stellate Cells Promote Liver Metastasis of Colon Cancer Cells by the Action of SDF-1/CXCR4 Axis

  • Translational Research and Biomarkers
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

It has been determined that the chemokine receptor CXCR4 and its ligand stromal cell-derived factor-1 (SDF-1) regulate several key processes in a wide variety of cancers. However, the function and mechanism of the SDF-1/CXCR4 system in the metastasis of colorectal cancer remain controversial.

Methods

Immunohistochemistry was performed to examine quantitatively the expression of CXCR4 in 40 human samples of colorectal cancer and liver metastasis. The functions of SDF-1 on HCT116 colon cancer cells were investigated in vitro. We subcutaneously inoculated HCT116 cells with hepatic stellate cells (HSCs) expressing SDF-1. The CXCR4 inhibitor AMD3100 was tested in vitro and in vivo.

Results

By quantitatively counting the number of cells, it was shown that there are more CXCR4-positive cells at the metastatic site in the liver compared with the primary sites. We demonstrated the effect of SDF-1 on the invasion and antiapoptosis of HCT116 cells in vitro. In mouse experiment of liver metastasis, intraperitoneal administration of AMD3100 blocked the metastatic potential of HCT116 cells. Furthermore, we found that α-smooth muscle actin (α-SMA)-positive myofibroblasts derived from HSCs, surrounding the liver metastasis foci, secreted SDF-1. The subcutaneous inoculation of HCT116 cells with HSCs promoted the tumor initiation in nude mice, indicating the importance of the direct interaction between these cells in vivo.

Conclusion

These results suggest that HSCs play important role in liver metastasis of colon cancer cells by the action of SDF-1/CXCR4 axis and provide preclinical evidence that blockade of the axis is a target for antimetastasis therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Edwards BK, Brown ML, Wingo PA, et al. Annual report to the nation on the status of cancer, 1975-2002, featuring population-based trends in cancer treatment. J Natl Cancer Inst. 2005;97(19):1407–27.

    Article  PubMed  Google Scholar 

  2. Jemal A, Siegel R, Ward E, et al. Cancer statistics, 2008. CA Cancer J Clin. 2008;58(2):71–96.

    Article  PubMed  Google Scholar 

  3. Taichman RS, Cooper C, Keller ET, et al. Use of the stromal cell-derived factor-1/CXCR4 pathway in prostate cancer metastasis to bone. Cancer Res. 2002;62(6):1832–7.

    PubMed  CAS  Google Scholar 

  4. Muller A, Homey B, Soto H, et al. Involvement of chemokine receptors in breast cancer metastasis. Nature. 2001;410(6824):50–6.

    Article  PubMed  CAS  Google Scholar 

  5. Murphy PM. Chemokines and the molecular basis of cancer metastasis. N Engl J Med. 2001;345(11):833–5.

    Article  PubMed  CAS  Google Scholar 

  6. Zeelenberg IS, Ruuls-Van Stalle L, Roos E. The chemokine receptor CXCR4 is required for outgrowth of colon carcinoma micrometastases. Cancer Res. 2003;63(13):3833–9.

    PubMed  CAS  Google Scholar 

  7. Koshiba T, Hosotani R, Miyamoto Y, et al. Expression of stromal cell-derived factor 1 and CXCR4 ligand receptor system in pancreatic cancer: a possible role for tumor progression. Clin Cancer Res. 2000;6(9):3530–5.

    PubMed  CAS  Google Scholar 

  8. Kijima T, Maulik G, Ma PC, et al. Regulation of cellular proliferation, cytoskeletal function, and signal transduction through CXCR4 and c-Kit in small cell lung cancer cells. Cancer Res. 2002;62(21):6304–11.

    PubMed  CAS  Google Scholar 

  9. Geminder H, Sagi-Assif O, Goldberg L, et al. A possible role for CXCR4 and its ligand, the CXC chemokine stromal cell-derived factor-1, in the development of bone marrow metastases in neuroblastoma. J Immunol. 2001;167(8):4747–57.

    PubMed  CAS  Google Scholar 

  10. Kim J, Takeuchi H, Lam ST, et al. Chemokine receptor CXCR4 expression in colorectal cancer patients increases the risk for recurrence and for poor survival. J Clin Oncol. 2005;23(12):2744–53.

    Article  PubMed  CAS  Google Scholar 

  11. Ottaiano A, Franco R, Aiello Talamanca A, et al. Overexpression of both CXC chemokine receptor 4 and vascular endothelial growth factor proteins predicts early distant relapse in stage II-III colorectal cancer patients. Clin Cancer Res. 2006;12(9):2795–803.

    Article  PubMed  CAS  Google Scholar 

  12. Schimanski CC, Schwald S, Simiantonaki N, et al. Effect of chemokine receptors CXCR4 and CCR7 on the metastatic behavior of human colorectal cancer. Clin Cancer Res. 2005;11(5):1743–50.

    Article  PubMed  CAS  Google Scholar 

  13. Iimuro Y, Nishio T, Morimoto T, et al. Delivery of matrix metalloproteinase-1 attenuates established liver fibrosis in the rat. Gastroenterology. 2003;124(2):445–58.

    Article  PubMed  CAS  Google Scholar 

  14. Thompson KC, Trowern A, Fowell A, et al. Primary rat and mouse hepatic stellate cells express the macrophage inhibitor cytokine interleukin-10 during the course of activation in vitro. Hepatology. 1998;28(6):1518–24.

    Article  PubMed  CAS  Google Scholar 

  15. Fidler IJ. Critical factors in the biology of human cancer metastasis: twenty-eighth G.H.A. Clowes memorial award lecture. Cancer Res. 1990;50(19):6130–8.

    PubMed  CAS  Google Scholar 

  16. Bouvet M, Tsuji K, Yang M, et al. In vivo color-coded imaging of the interaction of colon cancer cells and splenocytes in the formation of liver metastases. Cancer Res. 2006;66(23):11293–7.

    Article  PubMed  CAS  Google Scholar 

  17. Darby I, Skalli O, Gabbiani G. Alpha-smooth muscle actin is transiently expressed by myofibroblasts during experimental wound healing. Lab Invest. 1990;63(1):21–9.

    PubMed  CAS  Google Scholar 

  18. Serini G, Gabbiani G. Mechanisms of myofibroblast activity and phenotypic modulation. Exp Cell Res. 1999;250(2):273–83.

    Article  PubMed  CAS  Google Scholar 

  19. Orimo A, Gupta PB, Sgroi DC, et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell. 2005;121(3):335–48.

    Article  PubMed  CAS  Google Scholar 

  20. Hautekeete ML, Geerts A. The hepatic stellate (Ito) cell: its role in human liver disease. Virchows Arch. 1997;430(3):195–207.

    Article  PubMed  CAS  Google Scholar 

  21. Ara T, Tokoyoda K, Okamoto R, et al. The role of CXCL12 in the organ-specific process of artery formation. Blood. 2005;105(8):3155–61.

    Article  PubMed  CAS  Google Scholar 

  22. Balkwill F. The significance of cancer cell expression of the chemokine receptor CXCR4. Semin Cancer Biol. 2004;14(3):171–9.

    Article  PubMed  CAS  Google Scholar 

  23. Ottaiano A, di Palma A, Napolitano M, et al. Inhibitory effects of anti-CXCR4 antibodies on human colon cancer cells. Cancer Immunol Immunother. 2005;54(8):781–91.

    Article  PubMed  CAS  Google Scholar 

  24. Raman D, Baugher PJ, Thu YM, et al. Role of chemokines in tumor growth. Cancer Lett. 2007;256(2):137–65.

    Article  PubMed  CAS  Google Scholar 

  25. Smith MC, Luker KE, Garbow JR, et al. CXCR4 regulates growth of both primary and metastatic breast cancer. Cancer Res. 2004;64(23):8604–12.

    Article  PubMed  CAS  Google Scholar 

  26. Kawada K, Hosogi H, Sonoshita M, et al. Chemokine receptor CXCR3 promotes colon cancer metastasis to lymph nodes. Oncogene. 2007;26(32):4679–88.

    Article  PubMed  CAS  Google Scholar 

  27. Hermann PC, Huber SL, Herrler T, et al. Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell. 2007;1(3):313–23.

    Article  PubMed  CAS  Google Scholar 

  28. Burger JA, Kipps TJ. CXCR4: a key receptor in the crosstalk between tumor cells and their microenvironment. Blood. 2006;107(5):1761–7.

    Article  PubMed  CAS  Google Scholar 

  29. Allinen M, Beroukhim R, Cai L, et al. Molecular characterization of the tumor microenvironment in breast cancer. Cancer Cell. 2004;6(1):17–32.

    Article  PubMed  CAS  Google Scholar 

  30. Shimizu S, Yamada N, Sawada T, et al. In vivo and in vitro interactions between human colon carcinoma cells and hepatic stellate cells. Jpn J Cancer Res. 2000;91(12):1285–95.

    PubMed  CAS  Google Scholar 

  31. Schioppa T, Uranchimeg B, Saccani A, et al. Regulation of the chemokine receptor CXCR4 by hypoxia. J Exp Med. 2003;198(9):1391–402.

    Article  PubMed  CAS  Google Scholar 

  32. Struckmann K, Mertz K, Steu S, et al. pVHL co-ordinately regulates CXCR4/CXCL12 and MMP2/MMP9 expression in human clear-cell renal cell carcinoma. J Pathol. 2008;214(4):464–71.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hajime Kubo MD, PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsusue, R., Kubo, H., Hisamori, S. et al. Hepatic Stellate Cells Promote Liver Metastasis of Colon Cancer Cells by the Action of SDF-1/CXCR4 Axis. Ann Surg Oncol 16, 2645–2653 (2009). https://doi.org/10.1245/s10434-009-0599-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-009-0599-x

Keywords

Navigation