Skip to main content
Log in

Resistance to macrolide, lincosamide, streptogramin, ketolide, and oxazolidinone antibiotics

  • Review
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Macrolides have enjoyed a resurgence as new derivatives and related compounds have come to market. These newer compounds have become important in the treatment of community-acquired pneumoniae and nontuberculosis-Mycobacterium diseases. In this review, the bacterial mechanisms of resistance to the macrolide, lincosamide, streptogramin, ketolide, and oxazolidinone antibiotics, the distribution of the various acquired genes that confer resistance, as well as mutations that have been identified in clinical and laboratory strains are examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Kirst, H. A. (2001) Introduction to the macrolide antibiotics. In Macrolide Antibiotics (Schonfeld, W. and Kirst, H. A., eds.). Birkhauser Verlag, Boston, pp. 1–14.

    Google Scholar 

  2. Roberts, M. C., Sutcliffe, J., Courvalin, P., Jensen, L. B., Rood, J., and Seppala, H. (1999) Nomenclature for macrolide and macrolide-lincosamide streptogramin B antibiotic resistance determinants. Antimicrob. Agents Chemother. 43, 2823–2830.

    PubMed  CAS  Google Scholar 

  3. Iacoviello, V. R. and Zinner, S. H. (2001) Macrolides: a clinical overview. In Macrolide Antibiotics (Schonfeld, W. and Kirst, H. A., eds.). Birkhauser Verlag, Boston, pp. 15–24.

    Google Scholar 

  4. Bryskier, A. and Denis, A. (2001) Ketolides: novel antibacterial agents designed to overcome resistance to erythromycin A within gram-positive cocci. In Macrolide Antibiotics (Schonfeld, W. and Kirst, H. A., eds.). Birkhauser Verlag, Boston, pp. 97–140.

    Google Scholar 

  5. Camps, M., Arrizabalaga, G., and Boothroyd, J. (2002) An rRNA mutation identifies the apicoplast as the target for clindamycin in Toxoplasma gondii. Mol. Microbiol. 43, 1309–1328.

    Article  PubMed  CAS  Google Scholar 

  6. Speciale, A., La Ferla, K., Caccamo, F., and Nicoletti, G. (1999) Antimicrobial activity of quinupristin/dalfopristin, a new injectable streptogramin with wide Gram-positive spectrum. Int. J. Antimicrob. Agents 13, 21–28.

    Article  PubMed  CAS  Google Scholar 

  7. Edlund, C., Sillerstrom, E., Wahlund, E., and Nord, C. E. (1998) In vitro activity of HMR 3647 against anaerobic bacteria. J Chemother. 10, 280–284.

    PubMed  CAS  Google Scholar 

  8. Khan, A. A., Slifer, T. R., Arujo, F. G., and Remington, J. S. (2002) Effect of quinupristin-dalopristin on production of cytokines by human monocytes. J. Infect. Dis. 182, 356–358.

    Article  Google Scholar 

  9. Luh, K-T., Hsueh, P-R., Teng, L-J., et al. (2000) Quinupristin-dalopristin resistance among gram-positive bacteria in Taiwan. Antimicrob. Agents Chemother. 44, 3374–3380.

    Article  PubMed  CAS  Google Scholar 

  10. Kugler, K. C., Denys, G. A., Wilson, M. L., and Jones, R. N. (2000) Serious streptococcal infections produced by isolates resistant to streptogramins (quinupristin-dalopristin): case reports from the SENTRY antimicrobial surveillance program. Diagn. Microbiol. Infect. Dis. 36, 269–272.

    Article  PubMed  CAS  Google Scholar 

  11. Livermore, D. M. (2003) Linezolid in vitro: mechanism and antibacterial spectrum [Review]. J. Antimicrob. Chemother. 51(Suppl S2) ii9-ii16.

    PubMed  CAS  Google Scholar 

  12. MacGowan, A. P. (2003) Pharmacokinetic and pharmacodynamic profile of linezolid in healthy volunteers and patients with gram-positive infections [Review]. J. Antimicrob. Chemother. 51(Suppl S2) ii17-ii25.

    PubMed  CAS  Google Scholar 

  13. Wilcox, M. H. (2003) Efficacy of linezolid versus comparator therapies in Gram-positive infections [Review]. J. Antimicrob. Chemother. 51,(Suppl S2) ii27-ii35.

    PubMed  CAS  Google Scholar 

  14. Vera-Cabrera, L., Gomez-Flores, A., Escalante-Fuentes, W. G., and Welsh, O. (2001) In vitro activity of PNU-100766 (linezolid), a new oxazolidinone anti-microbial, against Norcardia brasiliensis. Antimicrob. Agents Chemother. 45, 3629–3620.

    Article  PubMed  CAS  Google Scholar 

  15. Weisblum, B. (1995) Erythromycin resistance by ribosome modification. Antimicrob. Agents Chemother. 39, 577–585.

    PubMed  CAS  Google Scholar 

  16. Roberts, M. C. and Brown, M. B. (1994) Macrolide-lincosamide resistance determinants in streptococcal species isolated from the bovine mammary gland. Vet. Microbiol. 40, 253–261.

    Article  PubMed  CAS  Google Scholar 

  17. Schwarz, S., Kehrenberg C., and Ojo, K. K. (2002) Staphylococcus sciuri gene erm(33), encoding inducible resistance to macrolides, lincosamides, and streptogramin B antibiotics, is a product of recombination between erm(C) and erm(A). Antimicrob. Agents Chemother. 46, 3621–3623.

    Article  PubMed  CAS  Google Scholar 

  18. Stanton, T. B. and Humphrey S. B. (2003) Isolation of tetracycline-resistant Megasphaera elsdenii strains with novel mosaic gene combinations of tet(O) and tet(W) from swine. Appl. Environ. Microbiol. 69, 3874–3882.

    Article  PubMed  CAS  Google Scholar 

  19. Chung, W. O., Werckenthin, C., Schwarz, S., and Roberts, M. C. (1999) Host range of the ermF rRNA methylase gene in human and animal bacteria. J. Antimicrob. Chemother. 43, 5–14.

    Article  PubMed  CAS  Google Scholar 

  20. Valentine, P. J., Shoemaker, N. B., and Salyers, A. A. (1988) Mobilization of bacteroides plasmids by bacteroides conjugal elements. J. Bacteriol. (170), 1319–1324.

    PubMed  CAS  Google Scholar 

  21. Atkinson, B. A., Abu-al-Jaibat, A., and LeBlanc, D. J. (1997) Antibiotic resistance among enterococci isolated from clinical specimens between 1953 and 1954. Antimicrob. Agents Chemother. 41, 1598–1600.

    PubMed  CAS  Google Scholar 

  22. Cousin, S. L., Jr., Whittington, W. L., and Roberts, M. C. (2003) Acquired macrolide resistance genes in pathogenic Neisseria spp. isolated between 1940 and 1987, Antimicrob. Agents. Chemother. 47, 3877–3880.

    Article  PubMed  CAS  Google Scholar 

  23. Hecht, D. W., Thompson, J. S., and Malamy, M. H. (1989) Characterization of the termini and transposition products of Tn4399, a conjugal mobilizing transposon of Bacteroides fragilis. Proc. Natl. Acad. Sci. USA 86, 5340–5344.

    Article  PubMed  CAS  Google Scholar 

  24. Rice, L. B. (1998) Tn916 family conjugative transposons and dissemination of antimicrobial resistance determinants. Antimicrob. Agents Chemother. 42, 1871–1877.

    PubMed  CAS  Google Scholar 

  25. Luna, V. A., Heiken, M., Judge, K., et al. (2002) Distribution of the mef(A) gene in gram-positive bacteria from healthy Portuguese children. Antimicrob. Agents Chemother. 46, 2513–2517.

    Article  PubMed  CAS  Google Scholar 

  26. Matsuoka, M., Endou, K., Kobayashi, H., Inoue, M., and Nakajima, Y. (1997) A dyadic plasmid that shows MLS and PMS resistance in Staphylococcus aureus. FEMS Microbiol. Lett. 148, 91–96.

    Article  PubMed  CAS  Google Scholar 

  27. Lina, G., Quaglia, A., Reverdy, M-E., Leclercq, R., Vandenesch, F., and Etienne, J. (1999) Distribution of genes encoding resistance to macrolides, lincosamides, and streptogramins among staphylococci. Antimicrob. Agents Chemother. 43, 1062–1066.

    PubMed  CAS  Google Scholar 

  28. Rodriquez, A., Olano, C., Vilches, C., Mendez, C., and Salas, J. A. (1993) Streptomyces antibioticus contains at least three oleandomycin-resistance determinants, one of which shows similarity with proteins of the ABC-transporter superfamily. Mol. Microbiol. 8, 571–582.

    Article  Google Scholar 

  29. Singh, K. V., Malathum, K., and Murray, B. E. (2001) Disruption of an Enterococcus faecium species-specific gene, a homologue of acquired macrolide resistance genes of staphylococci, is associated with an increase in macrolide susceptibility. Antimicrob. Agents Chemother. 45, 3672–3673.

    Article  Google Scholar 

  30. Santagati, M., Iannelli, F., Oggioni, M. R., Stefani, S., and Pozzi, G. (2000) Characterization of a genetic element carrying the macrolide efflux gene mef(A) in Streptococcus pneumoniae. Antimicrob. Agents Chemother. 44, 2585–2587.

    Article  PubMed  CAS  Google Scholar 

  31. Luna, V. A., Cousin, S., Jr., Whittington, W. L. H, and Roberts, M. C. (2000) Identification of the conjugative mef gene in clinical Acinetobacter junii and Neisseria gonorrhoeae isolates. Antimicrob. Agents Chemother. 44, 2503–2506.

    Article  PubMed  CAS  Google Scholar 

  32. Giovanetti, E., Brenciani, A., Lupidi, R., Roberts, M. C., and Varaldo, P. E. (2003) The presence of the tet(O) gene in erythromycin and tetracycline-resistant strains of Streptococcus pyogenes. Antimicrob. Agents Chemother. 47, 2844–2849.

    Article  PubMed  CAS  Google Scholar 

  33. Tait-Kamradt, A., Clancy, J., Cronan, M., et al. (1997) mefE is necessary for the erythromycin-resistance M phenotype in Streptococcus pneumoniae. Antimicrob. Agents Chemother. 41, 2335–2336.

    Google Scholar 

  34. Leclercq, R. and Courvalin, P. (2002) Resistance to macrolides and related antibiotics in Streptococcus pneumoniae. Antimicrob. Agents Chemother. 46, 2727–2734.

    Article  PubMed  CAS  Google Scholar 

  35. Sutcliffe, J. A. and Leclercq, R. (2003) Mechanisms of resistance to macrolides, lincosamides and ketolides. In Macrolide Antibiotics (Schonfeld, W. and Kirst, H. A., eds.). Birkhauser Verlag, Basel, pp. 281–317.

    Google Scholar 

  36. Roberts, M. C., Judge, K., Ulep, C., Luis, M., Bernardo, M., and Leitao, J. (2002) Acquired macrolide resistance, mef(A) and erm(B) genes in gram negative bacteria isolated from healthy Portugese children. 42nd Intersci. Conf. Antimicrob. Agents Chemother. Abstr C2-1992, p. 124, San Diego, CA, Sept. 27–30, 2002.

  37. Hyde, T. B., Gay, K., Stephens, D. S., et al. (2001) Macrolide resistance among invasive Streptococcus pneumoniae isolates. JAMA 286, 1857–1862.

    Article  PubMed  CAS  Google Scholar 

  38. Widdowson, C. A. and Klugman, L. P. (1998) Emergence of M phenotype of erythromycin-resistance pneumococci in South Africa. Emerg. Infect. Dis. 4, 277–281.

    Article  PubMed  CAS  Google Scholar 

  39. Arthur, M., Andremont, A., and Courvalin, P. (1987) Distribution of erythromycin esterase and rRNA methylase genes in members of the family Enterobacteriaceae highly resistant to erythromycin. Antimicrob. Agents Chemother. 31, 404–409.

    PubMed  CAS  Google Scholar 

  40. Thungapathra, M., Amita Sinha, K. K., Chaudhuri, S. R., et al. (2002) Occurrence of antibiotic resistance gene cassettes aac(6′)-Ib, dfrA5, dfrA12, and ereA2 in Class I integrons in Non-O1, Non-O139 Vibrio cholerae strains in India. Antimicrob. Agents Chemother. 46, 2948–2955.

    Article  PubMed  CAS  Google Scholar 

  41. Allignet, J. and El Solh, N. (1999) Comparative analysis of staphylococcal plasmids carrying three streptogramin-resistance genes: vat-vgb-vga. Plasmid 42, 134–138.

    Article  PubMed  CAS  Google Scholar 

  42. Jensen, L. B., Hammerum, A. M., Aarestrup, F. M., van den Bogaard, A. E., and Stobberingh, E. E. (1998) Occurrence of satA and vgb genes in streptograminresitant Enterococcus faecium isolates of animal and human origins in the Netherlands. Antimicrob. Agents Chemother. 42, 3330–3331.

    PubMed  CAS  Google Scholar 

  43. Seoane, A. and Garcia Lobo, J. M. (2000) Identification of a streptogramin A acetyltransferase gene in the chromosome of Yersinia enterocolitica. Antimicrob. Agents Chemother. 44, 905–909.

    Article  PubMed  CAS  Google Scholar 

  44. Soltani, M., Beighton, D., Philpott-Howard, J., and Woodford, N. (2000) Mechanisms of resistance to quinupristin-dalfopristin among isolates of Enterococcus faecium from animals, raw meat, and hospital patients in Western Europe. Antimicrob. Agents Chemother. 44, 433–436.

    Article  PubMed  CAS  Google Scholar 

  45. Noguchi, N., Emura, A., Matsuyama, H., O’Hara, K., Sasatsu, M., and Kono, M. (1995) Nucleotide sequence and characterization of erythromycin resistance determinant that encodes macrolide 2′-phosphotransdferase I in Escherichia coli. Antimicrob. Agents Chemother. 39, 2359–2363.

    PubMed  CAS  Google Scholar 

  46. Noguchi, N., Katayama, J., and O’Hara, K. (1996) Cloning and nucleotide sequence of the mphB gene from macrolide 2′-phosphotransdferase II in Escherichia coli. FEMS Microbiol. Lett. 144, 197–202.

    PubMed  CAS  Google Scholar 

  47. Matsuoka, M., Endou, K., Kobayashi, H., Inoue, M., and Nakajima, Y. (1998) A plasmid that encodes three genes for resistance to macrolide antibiotics in Staphylococcus aureus. FEMS Microbiol. Lett. 167, 221–227.

    Article  PubMed  CAS  Google Scholar 

  48. Kim, Y-H., Cha, C-J., and Cerniglia, C. E. (2002) Purification and characterization of an erythromycin esterase from an erythromycin-resistant Pseudomonas sp. FEMS Microbiol. Lett. 210, 239–244.

    Article  PubMed  CAS  Google Scholar 

  49. Ojo, K. K., Roberts, M. C., Ulep, C. et al. (2003) Macrolide esterases, phosphorylases, efflux pump and rRNA methylases in Gram-negative commensal bacteria. 43rd Intersci. Conf. Antimicrob. Agents Cheother., Abstract C2-90, Chicago, IL, Sept. 14–17, 2003.

  50. Ng, L-K., Martin, I., Liu, G., and Bryden, L. (2002) Mutation in 23S rRNA associated with macrolide resistance in Neisseria gonorrhoeae. Antimicrob. Agents Chemother. 46, 3020–3025.

    Article  PubMed  CAS  Google Scholar 

  51. Taylor, D. E., Ge, Z., Purych, D., Lo, T., and Hiratsuka, K. (1997) Cloning and sequence analysis of two copies of a 23S rRNA gene from Helicobacter pylori and association of clarithromycin resistance with 23S rRNA mutations. Antimicrob. Agents Chemother. 43, 2621–2628.

    Google Scholar 

  52. Nash, K. A. and Inderlied, C. B. (1996) Rapid detection of mutations associated with macrolide resistance in Mycobacterium avium complex. Antimicrob. Agents Chemother. 40, 1748–1750.

    PubMed  CAS  Google Scholar 

  53. Depardieu, F. and Courvalin, P. (2001) Mutation in 23S rRNA responsible for resistance to 16-membered macrolides and streptogramins in Streptococcus pneumnoniae. Antimicrob. Agents Chemother. 45, 319–323.

    Article  PubMed  CAS  Google Scholar 

  54. Prunier, A-L., Malbruny, B., Tande, D., Picard, B., and Leclercq, R. (2002) Clinical isolates of Staphylococcus aureus with ribosomal mutations conferring resistance to macrolides. Antimicrob. Agents Chemother. 46, 3054–3056.

    Article  PubMed  CAS  Google Scholar 

  55. Ross, J. I., Snelling, A. M., Eady, E. A., et al. (2001) Phenotypic and genotypic characterization of antibiotic-resistant Propionibacterium acnes isolated from acne patients attending dermatology clinics in Europe, the U.S.A., Japan and Australia. Br. J. Dermatol. 144, 339–346.

    Article  PubMed  CAS  Google Scholar 

  56. Furneri, P. M., Rappazzo, G., Musumarra, M. P., Pietro, P. D., Catania, L. S., and Roccasalva, L. S. (2001) Two new point mutations at A2062 associated with resistance to 16-membered macrolide antibiotics in mutant strains of Mycoplasma hominis. Antimicrob. Agents Chemother. 45, 2958–2960.

    Article  PubMed  CAS  Google Scholar 

  57. Lucier, T. S., Heitzman, K., Liu, K-K., and Hu, P-C. (1995) Transition mutations in the 23S rRNA of erythromycin-resistant isolates of Mycoplasma pneumoniae. Antimicrob. Agents Chemother. 39, 2770–2773.

    PubMed  CAS  Google Scholar 

  58. Bartkus, J. M., Juni, A., Ehresmann, K., et al. (2003) Identification of a mutation associated with erythromycin resistance in Bordetella pertussis: Implications for surveillance of antimicrobial resistance. J. Clin. Microbiol. 41, 1167–1172.

    Article  PubMed  CAS  Google Scholar 

  59. Jensen, L. B. and Aarestrup, F. M. (2001) Macrolide resistance in Campylobacter coli of animal origin in Denmark. Antimicrob. Agents Chemother. 45, 371, 372.

    Article  PubMed  CAS  Google Scholar 

  60. Lee, S. Y., Ning, Y, and Fenno, J. C. (2002) 23S rRNA point mutation associated with erythromycin resistance in Treponema denticola. FEMS Microbiol. Lett. 207, 39–42.

    Article  PubMed  CAS  Google Scholar 

  61. Xu, W., Pagel, F. T., and Murgola, E. J. (2002) Mutations in the GTPase center of Escherichia coli 23S rRNA indicate release factor 2-interactive sites. J. Bacteriol. 184, 1200–1203.

    Article  PubMed  CAS  Google Scholar 

  62. Vester, B. and Douthwaite, S. (2001) Macrolide resistance conferred by base substitutions in 23S rRNA. Antimicrob. Agents Chemother. 45, 1–12.

    Article  PubMed  CAS  Google Scholar 

  63. Pereyre, S., Gonzalez, P., de Barbeyrac, B., et al. (2002) Mutations in 23S rRNA account for intrinsic resistance to macrolides in Mycoplasma hominis and Mycoplasma fermentans and for acquire resistance to macrolides in M. hominis. Antimicrob. Agents Chemother. 46, 3142–3150.

    Article  PubMed  CAS  Google Scholar 

  64. Nagai, K., Appelbaum, P. C., Davies, T. A., et al. (2002) Susceptibilities to telithromycin and six other agents and prevalence of macrolide resistance due to L4 ribosomal protein mutation among 992 pneumococci from 10 Central and Eastern European countries. Antimicrob. Agents Chemother. 46, 371–377.

    Article  PubMed  CAS  Google Scholar 

  65. Malbruny, B., Canu, A., Bozdogan B., et al. (2002) Resistance to quinupristin-dalfopristin due to mutations of L22 ribosomal protein in Staphylococcus aureus. Antimicrob. Agents Chemother. 46, 2200–2207.

    Article  PubMed  CAS  Google Scholar 

  66. Tait-Kamradt, A., Davies, T., Appelbaum, P. C., et al. (2000) Two new mechanisms of macrolide resistance in clinical strains of Streptococcus pneumoniae from Eastern Europe and North America. Antimicrob. Agents Chemother. 44, 3395–3401.

    Article  PubMed  CAS  Google Scholar 

  67. Tait-Kamradt, A., Davies, T., Cronan, M., Jacobs, M. R., Appelbaum, P. C., and Sutcliffe, J. (2000) Mutations in 23S rRNA and L4 ribosomal protein account for resistance in pneumococcal strains selected in vitro by macrolide passage. Antimicrob. Agents Chemother. 44, 2118–2125.

    Article  PubMed  CAS  Google Scholar 

  68. Peric, M., Bozdogan, B., Jacobs, M. R., and Appelbaum, P. C. (2003) Effects of an efflux mechanism and ribosomal mutations on macrolide susceptibility of Haemophilus influenzae clinical isolates. Antimicrob. Agents Chemother. 47, 1017–1022.

    Article  PubMed  CAS  Google Scholar 

  69. Prunier, A. L., Malbruny, B., Tande, D., Picard, B., and Leclercq, R. (2002) Clinical isolates of Staphylococcus aureus with ribosomal mutations conferring resistance to macrolides. Antimicrob. Agents Chemother. 46, 3054–3056.

    Article  PubMed  CAS  Google Scholar 

  70. Malbruny, B., Nagai, K., Coquemont, M., et al. (2002) Resistance to macrolides in clinical isolates of Streptococcus pyogenes due to ribosomal mutations. J. Antimicrob. Chemother. 49, 935–939.

    Article  PubMed  CAS  Google Scholar 

  71. Besier, S., Hunfeld, K-P., Giesser, I., Schafer, V., Brade, V., and Wichelhaus, T. A. (2003) Selection of ketolide resistance in Staphylococcus aureus. Int. J. Antimicrob. Agents 22, 87–88.

    Article  PubMed  CAS  Google Scholar 

  72. Garza-Ramos, G., Xiong, L., Zhong P., and Mankin, A. (2001) Binding site of macrolide antibiotics on the ribosome: New resistance mutation identifies a specific interaction of ketolides with rRNA. J. Bacteriol. 184, 6898–6907.

    Article  CAS  Google Scholar 

  73. Woodford, N., Tysall, L., Auckland, C., et al. (2002) Detection of oxazolidinone-resistant Enterococcus faecalis and Enterococcus faecium strains by real-time PCR and PCR-restriction fragment length polymorphism analysis. J. Clin. Microbiol. 40, 4298–4300.

    Article  PubMed  CAS  Google Scholar 

  74. Schmitz, F-J., Petridou, J., Jagusch, H., Astfalk, N., Scheuring, S., and Schwarz, S. (2002) Molecular characterization of ketolide-resistance erm(A)-carrying Staphylococcus aureus isolates selected in vitro by telithromycin, ABT-773, quinupristin and clindamycin. J. Antimicrob. Chemother. 49, 611–617.

    Article  PubMed  CAS  Google Scholar 

  75. Webber, M. A. and Piddock, L. J. V. (2003) The importance of efflux pumps in bacterial antibiotic resistance. J. Antimicrob. Chemother. 51, 9–11.

    Article  PubMed  CAS  Google Scholar 

  76. Bolhuis, H., van Veen, H. W., Poolman, B., Driessen, A. J. M., and Konings, W. N. (1997) Mechanisms of multidrug transporters. FEMS Microbiol. Rev. 21, 55–84.

    Article  PubMed  CAS  Google Scholar 

  77. Nikaido, H. (1998) Multidrug efflux pumps of Gram-negative bacteria. J. Bacteriol. 178, 5853–5859.

    Google Scholar 

  78. Nikaido, H. (1998) Multiple antibiotic resistance and efflux. Curr. Opin. Microbiol. 1, 516–523.

    Article  PubMed  CAS  Google Scholar 

  79. Grkovic, S., Brown, M. H., and Skurray, R. A. (2002) Regulation of bacterial drug export systems. Microbiol. Mol. Biol. Rev. 66, 671–701.

    Article  PubMed  CAS  Google Scholar 

  80. Paulsen, I. T., Brown, M. H., and Skurray, R. A. (1996) Proton-dependent multidrug efflux systems. Microbiol Rev. 60, 575–608.

    PubMed  CAS  Google Scholar 

  81. Cousin, S. L., Jr., Whittington, W. L., and Roberts, M. C. (2003) Acquired macrolide resistance genes and the 1-bp deletion in the mtrR promoter in Neisseria gonorrhoeae. J. Antimicrob. Chemother. 51, 131–133.

    Article  PubMed  CAS  Google Scholar 

  82. Xia, M., Whittington, W. L., Shafer, W. M., and Holmes, K. K. (2000) Gonorrhea among men who have sex with men: outbreak caused by a single genotype of erythromycin-resistant Neisseria gonorrhoeae with a single-base pair deletion in the mtrR promoter region. J. Infect. Dis. 181, 2080–2082.

    Article  PubMed  CAS  Google Scholar 

  83. Zarantonelli, L., Borthagaray, G., Lee, E. H., Veal, W., and Shafer, W. M. (2001) Decrease susceptibility to azithromycin and erythromycin mediated by a novel mtr(R) promoter mutation in Neisseria gonorrhoeae. J. Antimicrob. Chemoth. 47, 651–654.

    Article  CAS  Google Scholar 

  84. Shafer, W. M., Balthazar, J. T., Hagman, K. E., and Morse, S. A. (1995) Missense mutations that alter the DNA-binding domain of the MtrR protein occur frequently in rectal isolates of Neisseria gonorrhoeae that are resistant to faecal lipids. Microbiology 141, 907–911.

    Article  PubMed  CAS  Google Scholar 

  85. Johnson, S. R., Sandul, A. L., Parekh, M., Wang, S. A., Knapp, J. S., and Trees, D. L. (2003) Mutations causing in vitro resistance to azithromycin in Neisseria gonorrhoeae. Int. J. Antimicrob. Agents 21, 414–419.

    Article  PubMed  CAS  Google Scholar 

  86. Sanchez, L., Pan, W., Vinas, M., and Nicaido, H. (1997) The acrAB homology of Haemophilus influenzae codes of a functional multidrug efflux pump. J. Bacteriol. 179, 6855–6857.

    PubMed  CAS  Google Scholar 

  87. Poelarends, G. J., Mazurkiewicz, P., Putman, M., Cool R. H., van Veen, H. W., and Konings, W. N. (2002) An ABC-type multidrug transporter of Lactococcus lactis possesses an exceptionally broad substrate specificity. Drug Resist. Updat. 3, 330–334.

    Article  Google Scholar 

  88. Marshall, B., Tachibana, C., and Levy, S. B. (1984) Frequency of tetracycline resistance determinants classes among lactose-fermenting coliforms. Antimicrob. Agents Chemother. 24, 835–840.

    Google Scholar 

  89. Aminov, R. I., Chee-Sanford, J. C., Garrigues, N., et al. (2002) Development, validation, and application of PCR primers for detection of tetracycline efflux genes of gram-negative bacteria. Appl. Environ. Microbiol. 68, 1786–1793.

    Article  PubMed  CAS  Google Scholar 

  90. Strizhkov, B. N., Drobyshev, A. L., Mikhailovich, V. M., and Mirzabekov, A. D. (2000) PCR amplification on a microarray of gel-immobilized oligonucleotides: detection of bacterial toxin- and drug-resistant genes and their mutations. Biotechniques 29, 844–857.

    PubMed  CAS  Google Scholar 

  91. Call, D. R., Bakko, M. K., Krug, M. J., and Roberts, M. C. (2003) Identifying antimicrobial resistance genes using DNA microarrays. Antimicrob. Agents Chemother., 47, 3290–3295.

    Article  PubMed  CAS  Google Scholar 

  92. Niwa, H., Chuma, T., Okamoto, K., and Itoh, K. (2001) Rapid detection of mutations associated with resistance to erythromycin Campylobacter jejuni/coli by PCR and line probe assay. Int. J. Antimicrob. Agents 18, 359–364.

    Article  PubMed  CAS  Google Scholar 

  93. Roberts, M. C. (1989) Gene transfer in the urogenital and respiratory tract. In Gene Transfer in the Environment (Levy, S. B. and Miller, R. V., eds.). McGraw-Hill, New York, pp. 347–375.

    Google Scholar 

  94. Zhu, J., Oger, P. M., Schrammeijer, B., Hooykaas, P. J. J., Farrand, S. K., and Winans, S. C. (2000) The base of crown gall tumorigenesis. J. Bacteriol. 182, 3885–3895.

    Article  PubMed  CAS  Google Scholar 

  95. Benveniste, R. and Davies, J. (1973) Aminoglycoside antibiotic-inactivation enzymes in actinomycetes similar to those present in clinical isolates of antibiotic resistant bacteria. Proc. Natl. Acad. Sci. USA 172, 3628–3632.

    Google Scholar 

  96. Lawrence, J. G. and Ochman, H. (2002) Reconciling the many faces of lateral gene transfer. Trends Microbiol. 10, 1–4.

    Article  PubMed  CAS  Google Scholar 

  97. Koonin, E. V., Makarova, K. S., and Aravind, L. (2001) Horizontal gene transfer in prokaryotes: quantification and classification. Annu. Rev. Microbiol. 55, 709–742.

    Article  PubMed  CAS  Google Scholar 

  98. Rowe-Magnus, D. A., Guerout, A-M., and Mazel, D. (2002) Bacterial resistance evolution by recruitment of superintegron gene cassettes. Mol. Microbiol. 43, 1657–1669.

    Article  PubMed  CAS  Google Scholar 

  99. Novick, R. P. (2003) Mobile genetic elements and bacterial toxinoses: the superantigen-encoding pathogenicity islands of Staphylococcus aureus. Plasmid 49, 93–105.

    Article  PubMed  CAS  Google Scholar 

  100. Bushman, F. (2002) Lateral DNA transfer-mechanisms and consequences. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 1–168, 388–391.

    Google Scholar 

  101. Clewell, D. B., Flannagan, S. E., and Jaworski, D. (1995) Unconstrained bacterial promiscuity: the Tn916-Tn1545 family of conjugative transpososns. Trends Microbiol. 3, 229–236.

    Article  PubMed  CAS  Google Scholar 

  102. Miranda, C. D., Kehrenberg, C., Ulep, C., Schwarz, S., and Roberts, M. C. (2003) Diversity of tetracycline resistance genes from bacteria isolated from Chilean Salmon farms. Antimicrob. Agents Chemother. 47, 883–888.

    Article  PubMed  CAS  Google Scholar 

  103. Doran, J. L., Pang, Y., Mdluli, K. E., et al. (1997) Mycobacterium tuberculosis efpA encodes an efflux protein of the QacA transporter family. Clin. Diagn. Lab. Immunol. 4, 23–32.

    PubMed  CAS  Google Scholar 

  104. Shoemaker, N. B., Vlamikis, H., Hayes, K., and Salyers, A. A. (2001) Evidence for extensive resistance gene transfer among Bacteroides spp. and between Bacteroides and other genera in the human colon. Appl. Environ. Microbiol. 67, 561–568.

    Article  PubMed  CAS  Google Scholar 

  105. Dixon, J. (1967) Pneumococcus resistant to erythromycin and lincomycin. Lancet 1, 573.

    Article  Google Scholar 

  106. Waites, K., Johnson, C., Gray, B., Edwards, K., Crain, M., and Benjamin, W., Jr. (2000) Use of clindamycin disks to detect macrolide resistance mediated by ermB and mefE in Streptococcus pneumoniae isolates from adults and children. J. Clin. Microbiol. 38, 1731–1734.

    PubMed  CAS  Google Scholar 

  107. Montanari, M. P., Cochetti, I., Mingoia, M., and Varaldo, P. E. (2003) Phenotypic and molecular characterization of tetracycline- and erythromycin-resistant strains of Streptococcus pneumoniae. Antimicrob. Agents Chemother. 47, 2236–2241.

    Article  PubMed  CAS  Google Scholar 

  108. Appelbaum, P. C. (1992) Antimicrobial resistance in Streptococcus pneumoniae: an overview. Clin. Infect. Dis. 15, 77–83.

    PubMed  CAS  Google Scholar 

  109. Tomasz, A. (1999) New faces of an old pathogen: emergence and spread of a multidrug-resistant Streptococcus pneumoniae. Am. J. Med. 107, 55S-66S.

    Article  PubMed  CAS  Google Scholar 

  110. Hakenbeck, R. (1998) Mosaic genes and their role in penicillin-resistant Electrophoresis 19, 597–601.

    Article  PubMed  CAS  Google Scholar 

  111. Karlsson, M., Fellstrom, C., Heldtander, M. U., Johansson, K. E., and Franklin, A. (1999) Genetic basis of macrolide and lincosamide resistance in Brachyspira (Serpulina) hyodysenteriae. FEMS Microbiol. Lett. 172, 255–260.

    Article  PubMed  CAS  Google Scholar 

  112. Hughes, V. M. and Datta, N. (1983) Conjugative plasmids in bacteria of the “pre-antibiotic” era. Nature 301, 725–726.

    Article  Google Scholar 

  113. Centers for Disease Control and Prevention. (2002) Sexually Transmitted Diseases Treatment Guidelines: MMWR 51 (No. RR-6). Centers for Disease Control and Prevention, Atlanta, GA.

    Google Scholar 

  114. National Committee for Clinical Laboratory Standards. (1998) Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically, 3rd ed. Approved Standards M7-A4, M100-S8. National Committee for Clinical Laboratory Standards, Wayne, PA.

    Google Scholar 

  115. Riley, D. E., Roberts, M. C., Takayama, T., and Krieger, J. N. (1992) Development of polymerase chain reaction-based (PCR) diagnosis of Trichomonas vaginalis using cloned, genomic sequences. J. Clin. Microbiol. 30, 465–472.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marilyn C. Roberts.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roberts, M.C. Resistance to macrolide, lincosamide, streptogramin, ketolide, and oxazolidinone antibiotics. Mol Biotechnol 28, 47–62 (2004). https://doi.org/10.1385/MB:28:1:47

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/MB:28:1:47

Index Entries

Navigation