Skip to main content
Log in

Differences in kinetics of donor lymphoid cells in response to G-CSF administration may affect the incidence and severity of acute GvHD in respective HLA-identical sibling recipients

  • Original Article
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Granulocyte-colony stimulating factor (G-CSF), in addition to myeloid and stem cells, mobilizes a large number of lymphoid cells. We examined which lymphoid populations were mobilized in 21 consecutive donors of peripheral blood stem cells (PBSC) and whether the differences in mobilization could affect the incidence of acute and chronic GvHD in respective HLA-identical recipients. G-CSF administration induced significant increases of donor B (CD3CD19+) lymphocytes and slight increases of T (CD3+) and cytotoxic (CD16+CD56+) NK cells. The number of extrathymic cells (CD3+ cells with NK markers, or CD7+) remained unchanged except for an increase of CD3+CD57+CD8+ cells. Donors of patients without subsequent grade II–IV acute GvHD compared to donors of patients who developed significant acute GvHD were found to have in peripheral blood stable numbers of CD3+CD4+ cells producing IL2, with a concomitant increased number of CD3+CD4low+CD25+ T regulatory cells and decreased NK-mediated cytotoxicity, together with a higher number of suppressive extrathymic CD57+CD3+ cells in the blood and G-PBMC grafts. Increasing numbers of activated T and NK cells in the blood were associated with the development of chronic GvHD. We suggest that differences in steady-state levels and kinetics of G-CSF induced mobilization of donor lymphoid cells may in addition to other well-known factors affect the incidence of GvHD in HLA-identical recipients. However, owing to the small number of donor-recipient pairs studied, our results must be verified in a larger group of patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Gyger M, Stuart RK, Perreault C. Immunobiology of allogeneic peripheral blood mononuclear cells mobilized with granulocyte-colony stimulating factor. Bone Marrow Transplant 2000;26:1–16.

    Article  PubMed  CAS  Google Scholar 

  2. Brunet S, et al. Favourable effect of the combination of acute and chronic graft-versus-host disease on the outcome of allogeneic peripheral blood stem cell transplantation for advanced haematological malignancies. Br J Haematol 2001;114:544–550.

    Article  PubMed  CAS  Google Scholar 

  3. Powles R, et al. Allogeneic blood and bone-marrow stem-cell transplantation in haematological malignant diseases: a randomised trial. Lancet 2000;355:1231–1237.

    Article  PubMed  CAS  Google Scholar 

  4. Kalayoglu-Besisik S, et al. High risk of chronic graft-versus-host disease in unmanipulated allogeneic peripheral blood stem cell transplantation. Blood 1998;92:2973–2975.

    PubMed  CAS  Google Scholar 

  5. Korbling M, et al. Allogeneic blood stem cell transplantation for refractory leukemia and lymphoma: potential advantage of blood over marrow allografts. Blood 1995;85:1659–1665.

    PubMed  CAS  Google Scholar 

  6. Abo T, et al. Extrathymic pathways of T-cell differentiation in the liver and other organs. Int Rev Immunol 1994;11:61–102.

    PubMed  CAS  Google Scholar 

  7. Howie D, et al. Extrathymic T cell differentiation in the human intestine early in life. J Immunol 1998;161:5862–5872.

    PubMed  CAS  Google Scholar 

  8. Abo T, Balch CM. A differentiation antigen of human NK and K cells identified by a monoclonal antibody (HNK-1). J Immunol 1981;127:1024–1029.

    PubMed  CAS  Google Scholar 

  9. Gorochov G, et al. Oligoclonal expansion of CD8+ CD57+ T cells with restricted T-cell receptor beta chain variability after bone marrow transplantation. Blood 1994;83:587–595.

    PubMed  CAS  Google Scholar 

  10. Autran B, et al. A soluble factor released by CD8+CD57+ lymphocytes from bone marrow transplanted patients inhibits cell-mediated cytolysis. Blood 1991;77:2237–2241.

    PubMed  CAS  Google Scholar 

  11. Przepiorka D, et al. 1994 Consensus Conference on Acute GVHD Grading. Bone Marrow Transplant 1995;15:825–828.

    PubMed  CAS  Google Scholar 

  12. Shulman HM, et al. Chronic graft-versus-host syndrome in man. A long-term clinicopathologic study of 20 Seattle patients. Am J Med 1980;69:204–217.

    Article  PubMed  CAS  Google Scholar 

  13. Mandy FF, Bergeron M, Recktenwald D, Izaguirre CA. A simultaneous three-color T cell subsets analysis with single laser flow cytometers using T cell gating protocol. Comparison with conventional two-color immunophenotyping method. J Immunol Methods 1992;156:151–162.

    Article  PubMed  CAS  Google Scholar 

  14. Zaucha JM, et al. CD34 cell dose in granulocyte colony-stimulating factor-mobilized peripheral blood mononuclear cell grafts affects engraftment kinetics and development of extensive chronic graft-versus-host disease after human leukocyte antigen-identical sibling transplantation. Blood 2001;98:3221–3227.

    Article  PubMed  CAS  Google Scholar 

  15. Sugimori N, et al. Administration of G-CSF to normal individuals diminishes L-selectin+ T cells in the peripheral blood that respond better to alloantigen stimulation than L-selectin-T cells. Bone Marrow Transplant 1999;23:119–124.

    Article  PubMed  CAS  Google Scholar 

  16. Graca L, et al. Both CD4(+)CD25(+) and CD4(+)CD25(−) regulatory cells mediate dominant transplantation tolerance. J Immunol 2002;168:5558–5565.

    PubMed  CAS  Google Scholar 

  17. Bryl E, Gazda M, Foerster J, Witkowski JM. Age-related increase of frequency of a new, phenotypically distinct subpopulation of human peripheral blood T cells expressing lowered levels of CD4. Blood 2001;98:1100–1107.

    Article  PubMed  CAS  Google Scholar 

  18. Rondelli D, et al. Alloantigen presenting capacity, T cell alloreactivity and NK function of G-CSF-mobilized peripheral blood cells. Bone Marrow Transplant 1998;22:631–637.

    Article  PubMed  CAS  Google Scholar 

  19. Sica S, et al. rhG-CSF in healthy donors: mobilization of peripheral hemopoietic progenitors and effect on peripheral blood leukocytes. J Hematother 1996;5:391–397.

    PubMed  CAS  Google Scholar 

  20. Leroy E, et al. Persistence of T8+/HNK-1+ suppressor lymphocytes in the blood of long-term surviving patients after allogeneic bone marrow transplantation. J Immunol 1986;137:2180–2189.

    PubMed  CAS  Google Scholar 

  21. Wang EC, Taylor-Wiedeman J, Perera P, Fisher J, Borysiewicz LK. Subsets of CD8+, CD57+ cells in normal, healthy individuals: correlations with human cytomegalovirus (HCMV) carrier status, phenotypic and functional analyses. Clin Exp Immunol 1993;94:297–305.

    Article  PubMed  CAS  Google Scholar 

  22. Landay A, Gartland GL, Clement LT. Characterization of a phenotypically distinct subpopulation of Leu-2+ cells that suppresses T cell proliferative responses. J Immunol 1983;131:2757–2761.

    PubMed  CAS  Google Scholar 

  23. Clement LT, Grossi CE, Gartland GL. Morphologic and phenotypic features of the subpopulation of Leu-2+ cells that suppresses B cell differentiation. J Immunol 1984;133:2461–2468.

    PubMed  CAS  Google Scholar 

  24. Ohkawa T, et al. Systematic characterization of human CD8+ T cells with natural killer cell markers in comparison with natural killer cells and normal CD8+ T cells. Immunology 2001;103:281–290.

    Article  PubMed  CAS  Google Scholar 

  25. Tomiyama K, Watanabe H, Seki S, Ito M, Abo T. Phenotypic and functional modulation of T cells in vivo by extrathymic T cells when T cells with MHC class II disparity were injected into athymic nude mice. Clin Exp Immunol 1998;112:196–204.

    Article  PubMed  CAS  Google Scholar 

  26. Tayebi H, et al. Effect of granulocyte colony-stimulating factor mobilization on phenotypical and functional properties of immune cells. Exp Hematol 2001;29:458–470.

    Article  PubMed  CAS  Google Scholar 

  27. Tanaka Y, et al. Hyperacute graft-versus-host disease and NKT cells. Am J Hematol. 2000;63:60–61.

    Article  PubMed  CAS  Google Scholar 

  28. Silva MR, Parreira A, Ascensao JL. Natural killer cell numbers and activity in mobilized peripheral blood stem cell grafts: conditions for in vitro expansion. Exp Hematol 1995;23:1676–1681.

    PubMed  CAS  Google Scholar 

  29. McQueen KL, Parham P. Variable receptors controlling activation and inhibition of NK cells. Curr Opin Immunol 2002;14:615–621.

    Article  PubMed  CAS  Google Scholar 

  30. Papiernik M, de Moraes ML, Pontoux C, Vasseur F, Penit C. Regulatory CD4 T cells: expression of IL-2R alpha chain, resistance to clonal deletion and IL-2 dependency. Int Immunol 1998;10:371–378.

    Article  PubMed  CAS  Google Scholar 

  31. Piccirillo CA, Shevach EM. Cutting edge: control of CD8+ T cell activation by CD4+CD25+ immunoregulatory cells. J Immunol 2001;167:1137–1140.

    PubMed  CAS  Google Scholar 

  32. Thornton AM, Shevach EM. CD4+CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J Exp Med 1998;188:287–296.

    Article  PubMed  CAS  Google Scholar 

  33. Goker H, Haznedaroglu IC, Chao NJ. Acute graft-vs-host disease: pathobiology and management. Exp Hematol 2001;29:259–277.

    Article  PubMed  CAS  Google Scholar 

  34. Tutschka PJ, Santos GW, Elfenbein GJ. Marrow transplantation in acute leukemia following busulfan and cyclophosphamide. Haematol Blood Transfus 1980;25:375–380.

    PubMed  CAS  Google Scholar 

  35. Storb R, et al. Methotrexate and cyclosporine compared with cyclosporine alone for prophylaxis of acute graft versus host disease after marrow transplantation for leukemia. N Engl J Med 1986;314:729–735.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piotr Trzonkowski MD.

Additional information

Both authors contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trzonkowski, P., Zaucha, J.M., Myśliwska, J. et al. Differences in kinetics of donor lymphoid cells in response to G-CSF administration may affect the incidence and severity of acute GvHD in respective HLA-identical sibling recipients. Med Oncol 21, 81–93 (2004). https://doi.org/10.1385/MO:21:1:81

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/MO:21:1:81

Key Words

Navigation