Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter May 15, 2020

PINK1 and Parkin: team players in stress-induced mitophagy

  • Verian Bader and Konstanze F. Winklhofer ORCID logo EMAIL logo
From the journal Biological Chemistry

Abstract

Mitochondria are highly vulnerable organelles based on their complex biogenesis, entailing dependence on nuclear gene expression and efficient import strategies. They are implicated in a wide spectrum of vital cellular functions, including oxidative phosphorylation, iron-sulfur cluster synthesis, regulation of calcium homeostasis, and apoptosis. Moreover, damaged mitochondria can release mitochondrial components, such as mtDNA or cardiolipin, which are sensed as danger-associated molecular patterns and trigger innate immune signaling. Thus, dysfunctional mitochondria pose a thread not only to the cellular but also to the organismal integrity. The elimination of dysfunctional and damaged mitochondria by selective autophagy, called mitophagy, is a major mechanism of mitochondrial quality control. Certain types of stress-induced mitophagy are regulated by the mitochondrial kinase PINK1 and the E3 ubiquitin ligase Parkin, which are both linked to autosomal recessive Parkinson’s disease.


Corresponding author: Konstanze F. Winklhofer, Department of Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Universitätsstrasse 150, D-44801, Bochum, Germany, E-mail:

Award Identifier / Grant number: WI 2111/6WI 2111/8under Germany’s Excellence Strategy – EXC 2033

Funding source: Michael J Fox Foundation

Award Identifier / Grant number: 16293

Acknowledgments

K. F. W. is supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany´s Excellence Strategy – EXC 2033 – 390677874 – RESOLV; WI 2111/6; WI 2111/8, and the Michael J. Fox Foundation (Grant Number 16293).

References

Aerts, L., Craessaerts, K., De Strooper, B., and Morais, V.A. (2015). PINK1 kinase catalytic activity is regulated by phosphorylation on serines 228 and 402. J. Biol. Chem 290: 2798–2811, https://doi.org/10.1074/jbc.M114.620906.Search in Google Scholar PubMed PubMed Central

Allen, G.F., Toth, R., James, J., and Ganley, I.G. (2013). Loss of iron triggers PINK1/Parkin-independent mitophagy. EMBO Rep. 14: 1127–1135, https://doi.org/10.1038/embor.2013.168.Search in Google Scholar PubMed PubMed Central

Altshuler-Keylin, S., Shinoda, K., Hasegawa, Y., Ikeda, K., Hong, H., Kang, Q., Yang, Y., Perera, R.M., Debnath, J., and Kajimura, S. (2016). Beige adipocyte maintenance is regulated by autophagy-induced mitochondrial clearance. Cell Metab 24: 402–419, https://doi.org/10.1016/j.cmet.2016.08.002.Search in Google Scholar PubMed PubMed Central

Area-Gomez, E., Guardia-Laguarta, C., Schon, E.A., and Przedborski, S. (2019). Mitochondria, OxPhos, and neurodegeneration: cells are not just running out of gas. J. Clin. Invest 129: 34–45, https://doi.org/10.1172/JCI120848.10.1172/JCI120848Search in Google Scholar PubMed PubMed Central

Ashford, T.P. and Porter, K.R. (1962). Cytoplasmic components in hepatic cell lysosomes. J. Cell Biol 12: 198–202, https://doi.org/10.1083/jcb.12.1.198.Search in Google Scholar PubMed PubMed Central

Bader, V. and Winklhofer, K.F. (2020). Mitochondria at the interface between neurodegeneration and neuroinflammation. Semin. Cell Dev. Biol 99: 163–171.10.1016/j.semcdb.2019.05.028Search in Google Scholar PubMed

Bayne, A.N. and Trempe, J.F. (2019). Mechanisms of PINK1, ubiquitin and Parkin interactions in mitochondrial quality control and beyond. Cell Mol Life Sci 76, 4589–4611, https://doi.org/10.3233/JAD-2010-100543.Search in Google Scholar PubMed

Bingol, B., Tea, J.S., Phu, L., Reichelt, M., Bakalarski, C.E., Song, Q., Foreman, O., Kirkpatrick, D.S., and Sheng, M. (2014). The mitochondrial deubiquitinase USP30 opposes parkin-mediated mitophagy. Nature 510: 370–375, https://doi.org/10.1038/nature13418.Search in Google Scholar PubMed

Cairo, M., Campderros, L., Gavalda-Navarro, A., Cereijo, R., Delgado-Angles, A., Quesada-Lopez, T., Giralt, M., Villarroya, J., and Villarroya, F. (2019). Parkin controls brown adipose tissue plasticity in response to adaptive thermogenesis. EMBO Rep 20: e46832, https://doi.org/10.15252/embr.201846832.Search in Google Scholar PubMed PubMed Central

Chu, C.T., Ji, J., Dagda, R.K., Jiang, J.F., Tyurina, Y.Y., Kapralov, A.A., Tyurin, V.A., Yanamala, N., Shrivastava, I.H., Mohammadyani, D., et al. (2013). Cardiolipin externalization to the outer mitochondrial membrane acts as an elimination signal for mitophagy in neuronal cells. Nat. Cell Biol 15: 1197–1205, https://doi.org/10.1038/ncb2837.Search in Google Scholar PubMed PubMed Central

Clark, S.L., Jr. (1957). Cellular differentiation in the kidneys of newborn mice studies with the electron microscope. J. Biophys. Biochem. Cytol 3: 349–362, https://doi.org/10.1083/jcb.3.3.349.Search in Google Scholar PubMed PubMed Central

Csordas, G., Weaver, D., and Hajnoczky, G. (2018). Endoplasmic reticulum-mitochondrial contactology: structure and signaling functions. Trends Cell Biol 28: 523–540, https://doi.org/10.1016/j.tcb.2018.02.009.Search in Google Scholar PubMed PubMed Central

Cunningham, C.N., Baughman, J.M., Phu, L., Tea, J.S., Yu, C., Coons, M., Kirkpatrick, D.S., Bingol, B., and Corn, J.E. (2015). USP30 and parkin homeostatically regulate atypical ubiquitin chains on mitochondria. Nat. Cell Biol 17: 160–169, https://doi.org/10.1038/ncb3097.Search in Google Scholar PubMed

Deas, E., Plun-Favreau, H., Gandhi, S., Desmond, H., Kjaer, S., Loh, S.H., Renton, A.E., Harvey, R.J., Whitworth, A.J., Martins, L.M., et al. (2011). PINK1 cleavage at position A103 by the mitochondrial protease PARL. Hum. Mol. Genet 20: 867–879, https://doi.org/10.1093/hmg/ddq526.10.1093/hmg/ddq526Search in Google Scholar PubMed PubMed Central

Deshwal, S., Fiedler, K.U., and Langer, T. (2020). Mitochondrial proteases: multifaceted regulators of mitochondrial plasticity. Annu. Rev. Biochem.https://doi.org/10.1146/annurev-biochem-062917-012739.Search in Google Scholar PubMed

Durcan, T.M. and Fon, E.A. (2015). The three 'P's of mitophagy: PARKIN, PINK1, and post-translational modifications. Genes Dev 29: 989–999, https://doi.org/10.1101/gad.262758.115.10.1101/gad.262758.115Search in Google Scholar PubMed PubMed Central

Duve, C.D. (1963). General properties of lysosomes: the lysosome concept. Lysosymes 1–35, https://doi.org/10.1002/9780470715314.ch1.Search in Google Scholar

Exner, N., Lutz, A.K., Haass, C., and Winklhofer, K.F. (2012). Mitochondrial dysfunction in Parkinson's disease: molecular mechanisms and pathophysiological consequences. EMBO J. 31, 3038–3062, DOI; https://doi.org/10.1038/emboj.2012.170.Search in Google Scholar PubMed PubMed Central

Friedman, J.R. and Nunnari, J. (2014). Mitochondrial form and function. Nature 505: 335–343, https://doi.org/10.1038/nature12985.Search in Google Scholar PubMed PubMed Central

Ganley, I.G. (2018). Organelle turnover: a USP30 safety catch restrains the trigger for mitophagy and pexophagy. Curr. Biol 28: R842–R845, https://doi.org/10.1016/j.cub.2018.06.067.Search in Google Scholar PubMed

Ge, P., Dawson, V.L., and Dawson, T.M. (2020). PINK1 and Parkin mitochondrial quality control: a source of regional vulnerability in Parkinson's disease. Mol. Neurodegener 15: 20, https://doi.org/10.1186/s13024-020-00367-7.Search in Google Scholar PubMed PubMed Central

Geisler, S., Holmstrom, K.M., Skujat, D., Fiesel, F.C., Rothfuss, O.C., Kahle, P.J., and Springer, W. (2010). PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat. Cell Biol 12: 119–131, https://doi.org/10.1038/ncb2012.Search in Google Scholar PubMed

Gersch, M., Gladkova, C., Schubert, A.F., Michel, M.A., Maslen, S., and Komander, D. (2017). Mechanism and regulation of the Lys6-selective deubiquitinase USP30. Nat. Struct. Mol. Biol 24: 920–930, https://doi.org/10.1038/nsmb.3475.Search in Google Scholar PubMed PubMed Central

Gomes, L.C., Di Benedetto, G., and Scorrano, L. (2011). During autophagy mitochondria elongate, are spared from degradation and sustain cell viability. Nat. Cell Biol 13: 589–598, https://doi.org/10.1038/ncb2220.Search in Google Scholar PubMed PubMed Central

Greene, A.W., Grenier, K., Aguileta, M.A., Muise, S., Farazifard, R., Haque, M.E., McBride, H.M., Park, D.S., and Fon, E.A. (2012). Mitochondrial processing peptidase regulates PINK1 processing, import and Parkin recruitment. EMBO Rep 13: 378–385, https://doi.org/10.1038/embor.2012.14.Search in Google Scholar PubMed PubMed Central

Hammerling, B.C., Najor, R.H., Cortez, M.Q., Shires, S.E., Leon, L.J., Gonzalez, E.R., Boassa, D., Phan, S., Thor, A., Jimenez, R.E. et al. (2017). A Rab5 endosomal pathway mediates Parkin-dependent mitochondrial clearance. Nat. Commun 8: 14050, https://doi.org/10.1038/ncomms14050.Search in Google Scholar PubMed PubMed Central

Hasson, S.A., Kane, L.A., Yamano, K., Huang, C.H., Sliter, D.A., Buehler, E., Wang, C., Heman-Ackah, S.M., Hessa, T., Guha, R., et al. (2013). High-content genome-wide RNAi screens identify regulators of parkin upstream of mitophagy. Nature 504: 291–295, https://doi.org/10.1038/nature12748.Search in Google Scholar PubMed PubMed Central

Heo, J.M., Ordureau, A., Paulo, J.A., Rinehart, J., and Harper, J.W. (2015). The PINK1-PARKIN mitochondrial Ubiquitylation pathway drives a program of OPTN/NDP52 recruitment and TBK1 activation to promote mitophagy. Mol. Cell 60: 7–20, https://doi.org/10.1016/j.molcel.2015.08.016.Search in Google Scholar PubMed PubMed Central

Hernandez, G., Thornton, C., Stotland, A., Lui, D., Sin, J., Ramil, J., Magee, N., Andres, A., Quarato, G., Carreira, R.S., et al. (2013). MitoTimer: a novel tool for monitoring mitochondrial turnover. Autophagy 9: 1852–61, https://doi.org/10.4161/auto.2650110.4161/auto.26501.10.4161/auto.26501Search in Google Scholar PubMed PubMed Central

Hsu, F., Spannl, S., Ferguson, C., Hyman, A.A., Parton, R.G., and Zerial, M. (2018). Rab5 and Alsin regulate stress-activated cytoprotective signaling on mitochondria. Elife 7: e32282, https://doi.org/10.7554/eLife.32282.Search in Google Scholar PubMed PubMed Central

Iguchi, M., Kujuro, Y., Okatsu, K., Koyano, F., Kosako, H., Kimura, M., Suzuki, N., Uchiyama, S., Tanaka, K., and Matsuda, N. (2013). Parkin-catalyzed ubiquitin-ester transfer is triggered by PINK1-dependent phosphorylation. J. Biol. Chem 288: 22019–220932, https://doi.org/10.1074/jbc.M113.467530.Search in Google Scholar PubMed PubMed Central

Jin, S.M., Lazarou, M., Wang, C., Kane, L.A., Narendra, D.P., and Youle, R.J. (2010). Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL. J. Cell Biol 191: 933–942, https://doi.org/10.1083/jcb.201008084.Search in Google Scholar PubMed PubMed Central

Kane, L.A., Lazarou, M., Fogel, A.I., Li, Y., Yamano, K., Sarraf, S.A., Banerjee, S., Youle, R.J. (2014). PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity. J. Cell. Biol 205: 143–153, https://doi.org/10.1083/jcb.201402104.Search in Google Scholar PubMed PubMed Central

Kanki, T, Wang, K, Cao, Y, Baba, M, Klionsky, DJ (2009). Atg32 is a mitochondrial protein that confers selectivity during mitophagy. Dev. Cell 17: 98–109, https://doi.org/10.1016/j.devcel.2009.06.014.Search in Google Scholar PubMed PubMed Central

Karbowski, M. and Youle, R.J. (2011). Regulating mitochondrial outer membrane proteins by ubiquitination and proteasomal degradation. Curr. Opin. Cell Biol 23: 476–482, https://doi.org/10.1016/j.ceb.2011.05.007.Search in Google Scholar PubMed PubMed Central

Katayama, H., Kogure, T., Mizushima, N., Yoshimori, T., and Miyawaki, A. (2011). A sensitive and quantitative technique for detecting autophagic events based on lysosomal delivery. Chem. Biol 18: 1042–1052, https://doi.org/10.1016/j.chembiol.2011.05.013.Search in Google Scholar PubMed

Kauppila, T.E.S, Kauppila, J.H.K., and Larsson, N.G. (2017). Mammalian mitochondria and aging: an update. Cell Metab 25: 57–71, https://doi.org/10.1016/j.cmet.2016.09.017.Search in Google Scholar PubMed

Kazlauskaite, A., Kondapalli, C., Gourlay, R., Campbell, D.G., Ritorto, M.S., Hofmann, K., Alessi, D.R., Knebel, A., Trost, M., and Muqit, M.M. (2014). Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at Ser65. Biochem. J 460: 127–139, https://doi.org/10.1042/BJ20140334.Search in Google Scholar PubMed PubMed Central

Kazlauskaite, A., Martinez-Torres, R.J., Wilkie, S., Kumar, A., Peltier, J., Gonzalez, A., Johnson, C., Zhang, J., Hope, A.G., Peggie, M., et al. (2015). Binding to serine 65-phosphorylated ubiquitin primes Parkin for optimal PINK1-dependent phosphorylation and activation. EMBO Rep 16: 939–954, https://doi.org/10.15252/embr.201540352.Search in Google Scholar PubMed PubMed Central

Kondapalli, C., Kazlauskaite, A., Zhang, N., Woodroof, H.I., Campbell, D.G., Gourlay, R., Burchell, L., Walden, H., Macartney, T.J., Deak, M., et al. (2012). PINK1 is activated by mitochondrial membrane potential depolarization and stimulates Parkin E3 ligase activity by phosphorylating Serine 65. Open Biol 2: 120080, https://doi.org/10.1098/rsob.120080.Search in Google Scholar PubMed PubMed Central

Koyano, F., Okatsu, K., Kosako, H., Tamura, Y., Go, E., Kimura, M., Kimura, Y., Tsuchiya, H., Yoshihara, H., Hirokawa, T., et al. (2014). Ubiquitin is phosphorylated by PINK1 to activate parkin. Nature 510: 162–166, https://doi.org/10.1038/nature13392.Search in Google Scholar PubMed

Kumar, A., Aguirre, J.D., Condos, T.E., Martinez-Torres, R.J., Chaugule, V.K., Toth, R., Sundaramoorthy, R., Mercier, P., Knebel, A., Spratt, D.E., et al. (2015). Disruption of the autoinhibited state primes the E3 ligase parkin for activation and catalysis. EMBO J 34: 2506–2521, https://doi.org/10.15252/embj.201592337.Search in Google Scholar PubMed PubMed Central

Lazarou, M., Jin, S.M., Kane, L.A., and Youle, R.J. (2012). Role of PINK1 binding to the TOM complex and alternate intracellular membranes in recruitment and activation of the E3 ligase Parkin. Dev. Cell 22: 320–333, https://doi.org/10.1016/j.devcel.2011.12.014.Search in Google Scholar PubMed PubMed Central

Lazarou, M., Sliter, D.A., Kane, L.A., Sarraf, S.A., Wang, C., Burman, J.L., Sideris, D.P., Fogel, A.I., and Youle, R.J. (2015). The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature 524: 309–314, https://doi.org/10.1038/nature14893.Search in Google Scholar PubMed PubMed Central

Lee, J.J., Sanchez-Martinez, A., Zarate, A.M., Beninca, C., Mayor, U., Clague, M.J., and Whitworth, A.J. (2018). Basal mitophagy is widespread in Drosophila but minimally affected by loss of Pink1 or parkin. J. Cell Biol 217: 1613–1622, https://doi.org/10.1083/jcb.201801044.Search in Google Scholar PubMed PubMed Central

Leites, E.P. and Morais, V.A. (2018). Mitochondrial quality control pathways: PINK1 acts as a gatekeeper. Biochem. Biophys. Res. Commun 500: 45–50, https://doi.org/10.1016/j.bbrc.2017.06.096.Search in Google Scholar PubMed

Lemasters, J.J. (2005). Selective mitochondrial autophagy, or mitophagy, as a targeted defense against oxidative stress, mitochondrial dysfunction, and aging. Rejuvenation Res 8: 3–5, https://doi.org/10.1089/rej.2005.8.3.Search in Google Scholar PubMed

Lu, X., Altshuler-Keylin, S., Wang, Q., Chen, Y., Henrique Sponton, C., Ikeda, K., Maretich, P., Yoneshiro, T., and Kajimura, S. (2018). Mitophagy controls beige adipocyte maintenance through a Parkin-dependent and UCP1-independent mechanism. Sci. Signal 11: eaap8526, https://doi.org/10.1126/scisignal.aap8526.Search in Google Scholar PubMed PubMed Central

Martinez-Vicente, M. (2017). Neuronal mitophagy in neurodegenerative diseases. Front. Mol. Neurosci 10: 64, https://doi.org/10.3389/fnmol.2017.00064.Search in Google Scholar PubMed PubMed Central

Matheoud, D., Sugiura, A., Bellemare-Pelletier, A., Laplante, A., Rondeau, C., Chemali, M., Fazel, A., Bergeron, J.J., Trudeau, L.E., Burelle, Y., et al. (2016). Parkinson's disease-related proteins PINK1 and Parkin repress mitochondrial antigen presentation. Cell 166: 314–327, https://doi.org/10.1016/j.cell.2016.05.039.Search in Google Scholar PubMed

Matsuda, N., Sato, S., Shiba, K., Okatsu, K., Saisho, K., Gautier, C.A., Sou, Y.S., Saiki, S., Kawajiri, S., Sato, F., et al. (2010). PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. J. Cell Biol 189: 211–221, https://doi.org/10.1083/jcb.200910140.Search in Google Scholar PubMed PubMed Central

McLelland, G.L., Goiran, T., Yi, W., Dorval, G., Chen, C.X., Lauinger, N.D., Krahn, A.I., Valimehr, S., Rakovic, A., Rouiller, I., et al. (2018). Mfn2 ubiquitination by PINK1/parkin gates the p97-dependent release of ER from mitochondria to drive mitophagy. Elife 7: e32866, https://doi.org/10.7554/eLife.32866.Search in Google Scholar PubMed PubMed Central

McLelland, G.L., Soubannier, V., Chen, C.X., McBride, H.M., and Fon, E.A. (2014). Parkin and PINK1 function in a vesicular trafficking pathway regulating mitochondrial quality control. EMBO J 33: 282–295, https://doi.org/10.1002/embj.201385902.Search in Google Scholar PubMed PubMed Central

McWilliams, T.G. and Ganley, I.G. (2019). Investigating mitophagy and mitochondrial morphology in vivo using mito-QC: a comprehensive guide. Methods Mol. Biol 1880: 621–642, https://doi.org/10.1007/978-1-4939-8873-0_41.Search in Google Scholar PubMed

McWilliams, T.G. and Muqit, M.M. (2017). PINK1 and Parkin: emerging themes in mitochondrial homeostasis. Curr. Opin. Cell Biol 45: 83–91, https://doi.org/10.1016/j.ceb.2017.03.013.Search in Google Scholar PubMed

McWilliams, T.G., Prescott, A.R., Allen, G.F., Tamjar, J., Munson, M.J., Thomson, C., Muqit, M.M., and Ganley, I.G. (2016). Mito-QC illuminates mitophagy and mitochondrial architecture in vivo. J. Cell Biol 214: 333–345, https://doi.org/10.1083/jcb.201603039.Search in Google Scholar PubMed PubMed Central

McWilliams, T.G., Prescott, A.R., Montava-Garriga, L., Ball, G., Singh, F., Barini, E., Muqit, M.M.K., Brooks, S.P., and Ganley, I.G. (2018). Basal Mitophagy Occurs Independently of PINK1 in Mouse Tissues of High Metabolic Demand. Cell Metab 27: 439–449 e5, 10.1016/j.cmet.2017.12.008.10.1016/j.cmet.2017.12.008Search in Google Scholar PubMed PubMed Central

Meissner, C., Lorenz, H., Weihofen, A., Selkoe, D.J., and Lemberg, M.K. (2011). The mitochondrial intramembrane protease PARL cleaves human Pink1 to regulate Pink1 trafficking. J. Neurochem 117: 856–867, https://doi.org/10.1111/j.1471-4159.2011.07253.x.Search in Google Scholar PubMed

Montava-Garriga, L., and Ganley, I.G. (2019). Outstanding questions in mitophagy: what we do and do not know. J. Mol. Biol 432: 206–230, https://doi.org/10.1016/j.jmb.2019.06.032.Search in Google Scholar PubMed

Narendra, D., Tanaka, A., Suen, D.F., and Youle, R.J. (2008). Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J. Cell. Biol 183: 795–803, https://doi.org/10.1083/jcb.200809125.Search in Google Scholar PubMed PubMed Central

Narendra, D.P., Jin, S.M., Tanaka, A., Suen, D.F., Gautier, C.A., Shen, J., Cookson, M.R., and Youle, R.J. (2010). PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol 8: e1000298, https://doi.org/10.1371/journal.pbio.1000298.Search in Google Scholar PubMed PubMed Central

Naresh, N.U. and Haynes, C.M. (2019). Signaling and regulation of the mitochondrial unfolded protein response. Cold Spring Harb. Perspect. Biol 11: a033944. https://doi.org/10.1101/cshperspect.a033944.Search in Google Scholar PubMed PubMed Central

Newman, L.E. and Shadel, G.S. (2018). Pink1/Parkin link inflammation, mitochondrial stress, and neurodegeneration. J. Cell Biol. 217: 3327–3329, https://doi.org/10.1083/jcb.201808118.Search in Google Scholar PubMed PubMed Central

Novikoff, A.B. and Essner, E. (1962). Cytolysomes and mitochondrial degeneration. J. Cell Biol 15: 140–146, https://doi.org/10.1083/jcb.15.1.140.Search in Google Scholar PubMed PubMed Central

Okamoto, K., Kondo-Okamoto, N., and Ohsumi, Y. (2009). Mitochondria-anchored receptor Atg32 mediates degradation of mitochondria via selective autophagy. Dev. Cell 17: 87–97, https://doi.org/10.1016/j.devcel.2009.06.013.Search in Google Scholar PubMed

Okatsu, K., Koyano, F., Kimura, M., Kosako, H., Saeki, Y., Tanaka, K., and Matsuda, N. (2015). Phosphorylated ubiquitin chain is the genuine Parkin receptor. J. Cell Biol 209: 111–128, https://doi.org/10.1083/jcb.201410050.Search in Google Scholar PubMed PubMed Central

Okatsu, K., Oka, T., Iguchi, M., Imamura, K., Kosako, H., Tani, N., Kimura, M., Go, E., Koyano, F., Funayama, M., et al. (2012). PINK1 autophosphorylation upon membrane potential dissipation is essential for Parkin recruitment to damaged mitochondria. Nat. Commun 3: 1016, https://doi.org/10.1038/ncomms2016.Search in Google Scholar PubMed PubMed Central

Okatsu, K., Uno, M., Koyano, F., Go, E., Kimura, M., Oka, T., Tanaka, K., Matsuda, N. (2013). A dimeric PINK1-containing complex on depolarized mitochondria stimulates Parkin recruitment. J. Biol. Chem 288: 36372–36384, https://doi.org/10.1074/jbc.M113.509653.Search in Google Scholar PubMed PubMed Central

Ordureau, A., Paulo, J.A., Zhang, J., An, H., Swatek, K.N., Cannon, J.R., Wan, Q., Komander, D., and Harper, J.W. (2020). Global landscape and dynamics of parkin and USP30-dependent ubiquitylomes in neurons during mitophagic signaling. Mol. Cell 77: 1124–1142 e10, https://doi.org/10.1016/j.molcel.2019.11.013.Search in Google Scholar PubMed PubMed Central

Ordureau, A., Paulo, J.A., Zhang, W., Ahfeldt, T., Zhang, J., Cohn, E.F., Hou, Z., Heo, J.M., Rubin, L.L., Sidhu, S.S., et al. (2018). Dynamics of PARKIN-dependent mitochondrial ubiquitylation in induced neurons and model systems revealed by digital snapshot proteomics. Mol. Cell 70: 211–227 e8, https://doi.org/10.1016/j.molcel.2018.03.012.Search in Google Scholar PubMed PubMed Central

Ordureau, A., Sarraf, S.A., Duda, D.M., Heo, J.M., Jedrychowski, M.P., Sviderskiy, V.O., Olszewski, J.L., Koerber, J.T., Xie, T., Beausoleil, S.A., et al. (2014). Quantitative proteomics reveal a feedforward mechanism for mitochondrial PARKIN translocation and ubiquitin chain synthesis. Mol. Cell 56: 360–375, https://doi.org/10.1016/j.molcel.2014.09.007.Search in Google Scholar PubMed PubMed Central

Palikaras, K., Lionaki, E., and Tavernarakis, N. (2018). Mechanisms of mitophagy in cellular homeostasis, physiology and pathology. Nat. Cell Biol 20: 1013–1022, https://doi.org/10.1038/s41556-018-0176-2.Search in Google Scholar PubMed

Phillips, M.J., and Voeltz, G.K. (2016). Structure and function of ER membrane contact sites with other organelles. Nat. Rev. Mol. Cell Biol 17: 69–82, https://doi.org/10.1038/nrm.2015.8.Search in Google Scholar PubMed PubMed Central

Phu, L., Rose, C.M., Tea, J.S., Wall, C.E., Verschueren, E., Cheung, T.K., Kirkpatrick, D.S., and Bingol, B. (2020). Dynamic regulation of mitochondrial import by the ubiquitin system. Mol. Cell 77: 1107–1123 e10, https://doi.org/10.1016/j.molcel.2020.02.012.Search in Google Scholar PubMed

Pickles, S., Vigie, P., and Youle, R.J. (2018). Mitophagy and quality control mechanisms in mitochondrial maintenance. Curr. Biol 28: R170–R185, https://doi.org/10.1016/j.cub.2018.01.004.Search in Google Scholar PubMed PubMed Central

Princely Abudu, Y., Pankiv, S., Mathai, B.J., Hakon Lystad, A., Bindesboll, C., Brenne, H.B., Yoke Wui Ng, M., Thiede, B., Yamamoto, A., Mutugi Nthiga, T., et al. (2019). NIPSNAP1 and NIPSNAP2 act as “eat me” signals for mitophagy. Dev. Cell 49: 509–525 e12, https://doi.org/10.1016/j.devcel.2019.03.013.Search in Google Scholar PubMed

Rambold, A.S., Kostelecky, B., Elia, N., and Lippincott-Schwartz, J. (2011). Tubular network formation protects mitochondria from autophagosomal degradation during nutrient starvation. Proc. Natl. Acad. Sci. U.S.A. 108: 10190–10195, https://doi.org/10.1073/pnas.1107402108.Search in Google Scholar PubMed PubMed Central

Rodger, C.E., McWilliams, T.G., and Ganley, I.G. (2018). Mammalian mitophagy - from in vitro molecules to in vivo models. FEBS J 285: 1185–1202, https://doi.org/10.1111/febs.14336.Search in Google Scholar PubMed PubMed Central

Rugarli, E.I. and Langer, T. (2012). Mitochondrial quality control: a matter of life and death for neurons. EMBO J 31: 1336–1349, https://doi.org/10.1038/emboj.2012.38.Search in Google Scholar PubMed PubMed Central

Sauve, V., Lilov, A., Seirafi, M., Vranas, M., Rasool, S., Kozlov, G., Sprules, T., Wang, J., and Trempe, J.F., Gehring, K (2015). A Ubl/ubiquitin switch in the activation of Parkin. EMBO J 34: 2492–2505, https://doi.org/10.15252/embj.201592237.Search in Google Scholar PubMed PubMed Central

Scarffe, L.A., Stevens, D.A., Dawson, V.L., and Dawson, T.M. (2014). Parkin and PINK1: much more than mitophagy. Trends Neurosci 37: 315–324, https://doi.org/10.1016/j.tins.2014.03.004.Search in Google Scholar PubMed PubMed Central

Schiavi, A., Maglioni, S., Palikaras, K., Shaik, A., Strappazzon, F., Brinkmann, V., Torgovnick, A., Castelein, N., De Henau, S., Braeckman, B.P., et al. (2015). Iron-starvation-induced mitophagy mediates lifespan extension upon mitochondrial stress in C. elegans. Curr. Biol 25: 1810–1822, https://doi.org/10.1016/j.cub.2015.05.059.Search in Google Scholar PubMed

Scott, S.V., and Klionsky, D.J. (1998). Delivery of proteins and organelles to the vacuole from the cytoplasm. Curr. Opin. Cell Biol 10: 523–529, https://doi.org/10.1016/s0955-0674(98)80068-9.Search in Google Scholar PubMed

Sekine, S., Wang, C., Sideris, D.P., Bunker, E., Zhang, Z., and Youle, R.J. (2019). Reciprocal roles of Tom7 and OMA1 during mitochondrial import and activation of PINK1. Mol. Cell 73: 1028–1043 e5, https://doi.org/10.1016/j.molcel.2019.01.002.Search in Google Scholar PubMed

Sekine, S., and Youle, R.J. (2018). PINK1 import regulation; a fine system to convey mitochondrial stress to the cytosol. BMC Biol 16: 2, https://doi.org/10.1186/s12915-017-0470-7.Search in Google Scholar PubMed PubMed Central

Shi, G., Lee, J.R., Grimes, D.A., Racacho, L., Ye, D., Yang, H., Ross, O.A., Farrer, M., McQuibban, G.A., and Bulman, D.E. (2011). Functional alteration of PARL contributes to mitochondrial dysregulation in Parkinson's disease. Hum. Mol. Genet 20: 1966–1974, https://doi.org/10.1093/hmg/ddr077.Search in Google Scholar PubMed

Shiba-Fukushima, K., Imai, Y., Yoshida, S., Ishihama, Y., Kanao, T., Sato, S., and Hattori, N. (2012). PINK1-mediated phosphorylation of the Parkin ubiquitin-like domain primes mitochondrial translocation of Parkin and regulates mitophagy. Sci. Rep 2: 1002, https://doi.org/10.1038/srep01002.Search in Google Scholar PubMed PubMed Central

Sliter, D.A., Martinez, J., Hao, L., Chen, X., Sun, N., Fischer, T.D., Burman, J.L., Li, Y., Zhang, Z., Narendra, D.P., et al. (2018). Parkin and PINK1 mitigate STING-induced inflammation. Nature 561: 258–262, https://doi.org/10.1038/s41586-018-0448-9.Search in Google Scholar PubMed PubMed Central

Stolz, A, Ernst, A, Dikic, I (2014). Cargo recognition and trafficking in selective autophagy. Nat. Cell Biol 16: 495–501, https://doi.org/10.1038/ncb2979.Search in Google Scholar PubMed

Sugiura, A., McLelland, G.L., Fon, E.A., and McBride, H.M. (2014). A new pathway for mitochondrial quality control: mitochondrial-derived vesicles. EMBO J 33: 2142–2156, https://doi.org/10.15252/embj.201488104.Search in Google Scholar PubMed PubMed Central

Sun, N., Yun, J., Liu, J., Malide, D., Liu, C., Rovira, I.I., Holmstrom, K.M., Fergusson, M.M., Yoo, Y.H., Combs, C.A., et al. (2015). Measuring in vivo mitophagy. Mol. Cell 60: 685–696, https://doi.org/10.1016/j.molcel.2015.10.009.Search in Google Scholar PubMed PubMed Central

Tanaka, A., Cleland, M.M., Xu, S., Narendra, D.P., Suen, D.F., Karbowski, M., and Youle, R.J. (2010). Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin. J. Cell Biol 191: 1367–1380, https://doi.org/10.1083/jcb.201007013.Search in Google Scholar PubMed PubMed Central

Thomas, R.E., Andrews, L.A., Burman, J.L., Lin, W.Y., and Pallanck, L.J. (2014). PINK1-Parkin pathway activity is regulated by degradation of PINK1 in the mitochondrial matrix. PLoS Genet 10: e1004279, https://doi.org/10.1371/journal.pgen.1004279.Search in Google Scholar PubMed PubMed Central

Tiku, V., Tan, M.W., and Dikic, I. (2020). Mitochondrial functions in infection and immunity. Trends Cell Biol 30: 263–275, https://doi.org/10.1016/j.tcb.2020.01.006.Search in Google Scholar PubMed PubMed Central

Tondera, D., Grandemange, S., Jourdain, A., Karbowski, M., Mattenberger, Y., Herzig, S., Da Cruz, S., Clerc, P., Raschke, I., and Merkwirth, C., et al. (2009). SLP-2 is required for stress-induced mitochondrial hyperfusion. EMBO J 28: 1589–1600, https://doi.org/10.1038/emboj.2009.89.Search in Google Scholar PubMed PubMed Central

Villa, E., Marchetti, S., and Ricci, J.E. (2018). No Parkin zone: mitophagy without Parkin. Trends Cell Biol 28: 882–895, https://doi.org/10.1016/j.tcb.2018.07.004.Search in Google Scholar PubMed

Vives-Bauza, C., and Przedborski, S. (2010). PINK1 points Parkin to mitochondria. Autophagy 6: 674–675. https://doi.org/10.4161/auto.6.5.12068.Search in Google Scholar PubMed

Voigt, A., Berlemann, L.A. and Winklhofer, K.F. (2016). The mitochondrial kinase PINK1: functions beyond mitophagy. J. Neurochem 139 (Suppl. 1): 232–239, https://doi.org/10.1111/jnc.13655.Search in Google Scholar PubMed

Wauer, T., Simicek, M., Schubert, A., and Komander, D. (2015a). Mechanism of phospho-ubiquitin-induced PARKIN activation. Nature 524: 370–374, https://doi.org/10.1038/nature14879.Search in Google Scholar PubMed PubMed Central

Wauer, T., Swatek, K.N., Wagstaff, J.L., Gladkova, C., Pruneda, J.N., Michel, M.A., Gersch, M., Johnson, C.M., Freund, S.M., and Komander, D. (2015b). Ubiquitin Ser65 phosphorylation affects ubiquitin structure, chain assembly and hydrolysis. EMBO J 34: 307–325, https://doi.org/10.15252/embj.201489847.Search in Google Scholar PubMed PubMed Central

Wei, Y., Chiang, W.C., Sumpter, R.Jr., Mishra, P., and Levine, B. (2017). Prohibitin 2 is an inner mitochondrial membrane mitophagy receptor. Cell 168: 224–238 e10, https://doi.org/10.1016/j.cell.2016.11.042.Search in Google Scholar PubMed PubMed Central

West, A.P., and Shadel, G.S. (2017). Mitochondrial DNA in innate immune responses and inflammatory pathology. Nat. Rev. Immunol 17: 363–375, https://doi.org/10.1038/nri.2017.21.Search in Google Scholar PubMed PubMed Central

Whitworth, A.J., Lee, J.R., Ho, V.M., Flick, R., Chowdhury, R., and McQuibban, G.A. (2008). Rhomboid-7 and HtrA2/Omi act in a common pathway with the Parkinson's disease factors Pink1 and Parkin. Dis. Models Mech 1: 168–174; discussion 173, https://doi.org/10.1242/dmm.000109.Search in Google Scholar PubMed PubMed Central

Whitworth, A.J. and Pallanck, L.J. (2017). PINK1/Parkin mitophagy and neurodegeneration-what do we really know in vivo? Curr. Opin. Genet. Dev 44: 47–53, https://doi.org/10.1016/j.gde.2017.01.016.Search in Google Scholar PubMed

Wilson, R.J., Drake, J.C., Cui, D., Zhang, M., Perry, H.M., Kashatus, J.A., Kusminski, C.M., Scherer, P.E., Kashatus, D.F., Okusa, M.D., et al. (2019). Conditional MitoTimer reporter mice for assessment of mitochondrial structure, oxidative stress, and mitophagy. Mitochondrion 44: 20–26, https://doi.org/10.1016/j.mito.2017.12.008.Search in Google Scholar PubMed PubMed Central

Winklhofer, K.F. (2014). Parkin and mitochondrial quality control: toward assembling the puzzle. Trends Cell Biol. 24: 332–341, https://doi.org/10.1016/j.tcb.2014.01.001.Search in Google Scholar PubMed

Yamano, K., Queliconi, B.B., Koyano, F., Saeki, Y., Hirokawa, T., Tanaka, K., and Matsuda, N. (2015). Site-specific Interaction mapping of phosphorylated ubiquitin to uncover Parkin activation. J. Biol. Chem 290: 25199–25211. https://doi.org/10.1074/jbc.M115.671446.Search in Google Scholar PubMed PubMed Central

Yoshii, S.R., Kishi, C., Ishihara, N., and Mizushima, N. (2011). Parkin mediates proteasome-dependent protein degradation and rupture of the outer mitochondrial membrane. J. Biol. Chem 286: 19630–19640, https://doi.org/10.1074/jbc.M110.209338.Search in Google Scholar PubMed PubMed Central

Youle, R.J. (2019). Mitochondria-Striking a balance between host and endosymbiont. Science 365: eaaw9855, https://doi.org/10.1126/science.aaw9855.Search in Google Scholar PubMed

Zhang, H., Bosch-Marce, M., Shimoda, L.A., Tan, Y.S., Baek, J.H., Wesley, J.B., Gonzalez, F.J., and Semenza, G.L. (2008). Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J. Biol. Chem 283: 10892–10903, https://doi.org/10.1074/jbc.M800102200.Search in Google Scholar PubMed PubMed Central

Zhang, W., Ren, H., Xu, C., Zhu, C., Wu, H., Liu, D., Wang, J., Liu, L., Li, W., Ma, Q., et al. (2016). Hypoxic mitophagy regulates mitochondrial quality and platelet activation and determines severity of I/R heart injury. eLife 5: e21407. https://doi.org/10.7554/eLife.21407.Search in Google Scholar PubMed PubMed Central

Zheng, Y., Zhang, X., Wu, X., Jiang, L., Ahsan, A., Ma, S., Xiao, Z., Han, F., Qin, Z.H., Hu, W., et al. (2019). Somatic autophagy of axonal mitochondria in ischemic neurons. J. Cell Biol 218: 1891–1907, https://doi.org/10.1083/jcb.201804101.Search in Google Scholar PubMed PubMed Central

Received: 2020-02-13
Accepted: 2020-04-09
Published Online: 2020-05-15
Published in Print: 2020-05-26

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 29.3.2024 from https://www.degruyter.com/document/doi/10.1515/hsz-2020-0135/html
Scroll to top button