Skip to main content
Log in

Colloid Volume Expanders

Problems, Pitfalls and Possibilities

  • Review Article
  • Published:
Drugs Aims and scope Submit manuscript

Summary

Colloid solutions have been developed and used over the past 70 years as expanders of the intravascular space, based on an understanding of Starling’s law. Increasing osmotic pressure with colloidal products has remained an attractive theoretical premise for volume resuscitation. Indeed, colloids have been shown to increase osmotic pressure in clinical practice; however, the effects are shortlived. Lower molecular weight colloids exert a larger initial osmotic effect, but are rapidly cleared from the circulation. Larger molecules exert a smaller osmotic pressure that is sustained longer.

The main drawback to colloid therapy lies in pathological states with endothelial injury and capillary leak, precisely the clinical scenario where colloids are commonly given. The colloid solution may leak into the interstitium and remain there exerting an osmotic gradient, pulling additional water into the interstitium.

There are 4 general types of colloid products available for clinical use. Albumin is the predominant plasma protein and remains the standard against which other colloids are compared. Albumin, pooled from human donors, is in short supply and remains expensive. Dextrans have been used to prevent deep venous thrombosis and to lower blood viscosity during surgery. Hetastarch has been widely used as a plasma volume expander. It provides equivalent plasma volume expansion to albumin, but has been shown to alter clotting parameters in studies (prolonging the activated partial thromboplastin time and prothrombin time). Although severe coagulopathies have been reported in sporadic cases, hetastarch has not been shown to increase postoperative bleeding compared with albumin therapy, even in large doses (3 L/day).

Despite some theoretical advantages compared with crystalloid therapy, colloid administration has not been shown to decrease the risk of acute lung injury or to improve survival. Specific indications for colloid products include hypoproteinaemic or malnourished states, patients who require plasma volume expansion who are unable to tolerate larger amounts of fluid, orthopaedic and reconstructive procedures requiring prevention of thrombus formation and leukapheresis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Weil MH, Morissette M, Michaels S, et al. Routine plasma colloid osmotic pressure measurements. Crit Care Med 1974 Sep–Oct; 2(5): 229–34

    Article  PubMed  CAS  Google Scholar 

  2. Webb AR, Barclay SA, Bennett ED. In vitro colloid osmotic pressure of commonly used plasma expanders and substitutes: a study of the diffusibility of colloid molecules. Intensive Care Med 1989; 15(2): 116–20

    Article  PubMed  CAS  Google Scholar 

  3. Starling EH. On the absorption of fluids from the connective tissues spaces. J Physiol 1896; 19: 312–26

    PubMed  CAS  Google Scholar 

  4. Taylor AE. Capillary fluid filtration: Starling forces and lymph flow. Circ Res 1981 Sep; 49(3): 557–75

    Article  PubMed  CAS  Google Scholar 

  5. Barclay SA, Bennett ED. The direct measurement of plasma colloid osmotic pressure is superior to colloid osmotic pressure derived from albumin or total protein. Intensive Care Med 1987; 13(2): 114–8

    Article  PubMed  CAS  Google Scholar 

  6. Billmeyer FW. Measuring the weight of giant molecules. Chemistry 1966; 39: 8–14

    CAS  Google Scholar 

  7. Fleck A, Raines G, Hawker F, et al. Increased vascular permeability: a major cause of hypoalbuminaemia in disease and injury. Lancet 1985; Apr 6; I(8432): 781–4

    Article  Google Scholar 

  8. Mishler JM. Synthetic plasma volume expanders — their pharmacology, safety and clinical efficacy. Clin Haematol 1984 Feb; 13(1): 75–92

    PubMed  CAS  Google Scholar 

  9. Nearman HS, Herman ML. Toxic effects of colloids in the intensive care unit. Crit Care Clin 1991 Jul; 7(3): 713–23

    PubMed  CAS  Google Scholar 

  10. Lamke LO, Liljedahl SO. Plasma volume expansion after infusion of 5%, 20% and 25% albumin solutions in patients. Resuscitation 1976; 5(2): 85–92

    Article  PubMed  CAS  Google Scholar 

  11. Ring J, Messmer K. Incidence and severity of anaphylactoid reactions to colloid volume substitutes. Lancet 1977 Feb; I(8009): 466–9

    Article  Google Scholar 

  12. Kovalik SG, Ledgerwood AM, Lucas CE, et al. The cardiac effect of altered calcium homeostasis after albumin resuscitation. J Trauma 1981 Apr; 21(4): 275–9

    Article  PubMed  CAS  Google Scholar 

  13. Ledgerwood AM, Lucas CE. Postresuscitation hypertension, etiology, morbidity and treatment. Arch Surg 1974 Apr; 108(4): 531–8

    Article  PubMed  CAS  Google Scholar 

  14. Gore DC, Dalton JM, Gehr TW. Colloid infusions reduce glomerular filtration in resuscitated burn patients. J Trauma 1996 Mar; 40(3): 356–60

    Article  PubMed  CAS  Google Scholar 

  15. Lucas CE. Renal considerations in the injured patient. Surg Clin North Am 1982 Feb; 62(1): 133–48

    PubMed  CAS  Google Scholar 

  16. Klein GL. The aluminum content of parenteral solutions: current status. Nutr Rev 1991 Mar; 49(3): 74–9

    Article  PubMed  CAS  Google Scholar 

  17. Salmon JB, Mythen MG. Pharmacology and physiology of colloids. Blood Rev 1993 Jun; 7(2): 114–20

    Article  PubMed  CAS  Google Scholar 

  18. Bergqvist D. Dextran and haemostasis: a review. Acta Chir Scand 1982; 148(8): 633–40

    PubMed  CAS  Google Scholar 

  19. Aberg M, Hedner U, Bergentz SE. Effect of dextran on factor VIII (antihemophilic factor) and platelet function. Ann Surg 1979 Feb; 189(2): 243–7

    Article  PubMed  CAS  Google Scholar 

  20. Laubenthal H, Messmer K. Allergic reactions to dextrans. In: Baron JF, editor. Plasma volume expansion. Paris: Arnette Blackwell, 1992

    Google Scholar 

  21. Mishler JM, Hester JP, Heustis DW, et al. Dosage and scheduling regimens for erythrocyte-sedimenting macromolecules. J Clin Apheresis 1983; 1(3): 130–43

    Article  PubMed  CAS  Google Scholar 

  22. Strauss RG, Stump DC, Henriksen RA, et al. Effects of hydroxyethyl starch on fibrinogen, fibrin clot formation, and fibrinolysis. Transfusion 1985 May–Jun; 25(3): 230–4

    Article  PubMed  CAS  Google Scholar 

  23. Alexander B, Odake K, Lawlor D, et al. Coagulation, hemostasis, and plasma expanders: a quarter century enigma. Fed Proc 1975 May; 34(6): 1429–40

    PubMed  CAS  Google Scholar 

  24. Stump DC, Strauss RG, Henriksen RA, et al. Effects of hydroxyethyl starch on blood coagulation, particularly Factor VIII. Transfusion 1985 May–Jun; 25(4): 349–54

    Article  PubMed  CAS  Google Scholar 

  25. Gold MS, Russo J, Tissot M, et al. Comparison of hetastarch to albumin for perioperative bleeding in patients undergoing abdominal aortic aneurysm surgery: a prospective, randomized study. Ann Surg 1990 Apr; 211(4): 482–5

    Article  PubMed  CAS  Google Scholar 

  26. Brutocao D, Bratton SL, Thomas JR, et al. Comparison of hetastarch with albumin for postoperative volume expansion in children after cardiopulmonary bypass. J Cardiothorac Vasc Anesth 1996 Apr; 10(3): 348–51

    Article  PubMed  CAS  Google Scholar 

  27. Villarino ME, Gordon SM, Valdon C, et al. A cluster of severe postoperative bleeding following open heart surgery. Infect Control Hosp Epidemiol 1992 May; 13(5): 282–7

    Article  PubMed  CAS  Google Scholar 

  28. Dienes HP, Gerharz CD, Wagner R, et al. Accumulation of hydroxyethyl starch (HES) in the liver of patients with renal failure and portal hypertension. J Hepatol 1986; 3(2): 223–7

    Article  PubMed  CAS  Google Scholar 

  29. London MJ, Ho JS, Triedman JK, et al. A randomized clinical trial of 10% pentastarch (low molecular weight hydroxyethyl starch) versus 5% albumin for plasma volume expansion after cardiac operations. J Thorac Cardiovasc Surg 1989 May; 97(5): 785–97

    PubMed  CAS  Google Scholar 

  30. Rackow EC, Mecher C, Astiz ME, et al. Effects of pentastarch and albumin infusion on cardiorespiratory function and coagulation in patients with severe sepsis and systemic hypoperfusion. Crit Car Med 1989 May; 17(5): 394–8

    Article  CAS  Google Scholar 

  31. Brazeal BA, Honeycutt D, Traber LD, et al. Pentafraction for superior resuscitation of the ovine thermal burn. Crit Care Med 1995 Feb; 23(2): 332–39

    Article  PubMed  CAS  Google Scholar 

  32. Yeh T, Parmar JM, Rebeyka IM, et al. Limiting edema in neonatal cardiopulmonary bypass with narrow-range molecular weight hydroxyethyl starch. J Thorac Cardiovasc Surg 1992 Sep; 104(3): 659–65

    PubMed  Google Scholar 

  33. Saddler JM, Horsey PJ. The new generation gelatins. Anaesthesia 1987 Sept; 42(9): 998–1004

    Article  PubMed  CAS  Google Scholar 

  34. Lundsgaard-Hansen P, Tschirren B. Clinical experience with 120,000 units of modified fluid gelatin. Dev Biol Stand 1980; 48: 251–6

    PubMed  CAS  Google Scholar 

  35. Tranbaugh RF, Elings VB, Christensens J, et al. Determinants of pulmonary interstitial fluid accumulation after trauma. J Trauma 1982 Oct; 22(10): 820–6

    Article  PubMed  CAS  Google Scholar 

  36. Weaver DW, Ledgerwood AM, Lucas CE, et al. Pulmonary effects of albumin resuscitation for severe hypovolemic shock. Arch Surg 1978 Apr; 113(4): 387–92

    Article  PubMed  CAS  Google Scholar 

  37. Holcroft JW, Trunkey DD. Pulmonary extravasation of albumin during and after hemorrhagic shock in baboons. J Surg Res 1975 Feb; 18(2): 91–7

    Article  PubMed  CAS  Google Scholar 

  38. Robin ED, Carey LC, Grevik A, et al. Capillary leak syndrome with pulmonary edema. Arch Intern Med 1972 Jul; 130(1): 66–71

    Article  PubMed  CAS  Google Scholar 

  39. Appel P, Shoemaker WC. Evaluation of fluid therapy in advanced respiratory failure. Crit Care Med 1981 Dec; 9(12): 862–9

    Article  PubMed  CAS  Google Scholar 

  40. Imm A, Carlson RW. Fluid resuscitation in circulatory shock. Crit Care Clinics 1993 Apr; 9(2): 313–33

    CAS  Google Scholar 

  41. Mackersie RC, Durelle J. Differential clearance of colloid and crystalloid solutions from the lung. J Trauma 1993 Sep; 35(3): 448–53

    Article  PubMed  CAS  Google Scholar 

  42. Goodman BE, Kim KJ, Crandall ED. Evidence for active sodium transport across the alveolar epithelium of isolated rat lung. J Appl Physiol 1987 Jun; 62(2): 2460–6

    PubMed  CAS  Google Scholar 

  43. Goodman BE, Anderson JL, Clemens JW. Evidence for regulation of sodium transport from airspace to vascular space by cAMP. Am J Physiol 1989 Aug; 257(2 Pt 1): 86–93

    Google Scholar 

  44. Ratner LE, Smith GW. Intraoperative fluid management. Surg Clin North Am 1993 Apr; 73(2): 229–41

    PubMed  CAS  Google Scholar 

  45. Velanovich V. Crystalloid versus colloid fluid resuscitation: a meta-analysis of mortality. Surgery 1989 Jan; 105(1): 65–71

    PubMed  CAS  Google Scholar 

  46. Stockwell MA, Sone N, Riley B. Colloid solutions in the critically ill: a randomized comparison of albumin and polygeline. 1: outcome and duration of stay in the intensive care unit. Anaesthesia 1992 Jan; 47(1): 3–6

    CAS  Google Scholar 

  47. Kirklin JK, Lell WA, Kouchoukos NT. Hydroxyethyl starch versus albumin for colloid infusion following cardiopulmonary bypass in patients undergoing myocardial revascularization. Ann Thorac Surg 1984 Jan; 37(1): 40–6

    Article  PubMed  CAS  Google Scholar 

  48. Boldt J, Knothe C, Schindler E, et al. Volume replacement with hydroxyethyl starch solution in children. Br J Anaesth 1993 Jun; 70(6): 661–5

    Article  PubMed  CAS  Google Scholar 

  49. Shatney CH, Deepika K, Militello PR, et al. Efficacy of hetastarch in the resuscitation of patients with multisystem trauma and shock. Arch Surg 1983 Jul; 118(7): 804–9

    Article  PubMed  CAS  Google Scholar 

  50. Vogt NH, Bothner U, Lerch G, et al. Large-dose administration of 6% hydroxyethyl starch 200/0.5 for total hip arthroplasty: plasma homeostasis, hemostasis, and renal function compared to use of 5% human albumin. Anesth Analg 1996 Aug; 83(2): 262–8

    PubMed  CAS  Google Scholar 

  51. Marcus MAE, Vertommen JD, Aken HV. Hydroxyethyl starch versus lactated Ringer’s solution in the chronic maternal-fetal sheep preparation: a pharmacodynamic and pharmacokinetic study. Anesth Analg 1995 May; 80(5): 949–54

    PubMed  CAS  Google Scholar 

  52. Dawidson IJA, Willms CD, Sandor ZF, et al. Ringer’s lactate with or without 3% dextran as volume expanders during abdominal aortic surgery. Crit Care Med 1991 Jan; 19(1): 36–42

    Article  PubMed  CAS  Google Scholar 

  53. So KW, Fok TF, Wong WW, et al. Randomized controlled trial of colloid or crystalloid in hypertensive preterm infants. Arch Dis Child 1997; 76: F43–6

    CAS  Google Scholar 

  54. Guha SC, Kinsky MP, Button B, et al. Burn resuscitation: crystalloid versus colloid versus hypertonic saline hyperoncotic colloid in sheep. Crit Care Med 1996 Nov; 24(11): 1849–57

    Article  PubMed  CAS  Google Scholar 

  55. Mortelmans YJ, Vermaut G, Verbruggen AM, et al. Effects of 6% hydroxyethyl starch and 3% modified fluid gelatin in intravascular volume and coagulation during intraoperative hemodilution. Anesth Analg 1995 Dec; 81(6): 1235–42

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan L. Bratton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roberts, J.S., Bratton, S.L. Colloid Volume Expanders. Drugs 55, 621–630 (1998). https://doi.org/10.2165/00003495-199855050-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-199855050-00002

Keywords

Navigation