Skip to main content
Log in

Targeting of Costimulatory Molecules as a Therapeutic Approach in Inflammatory Bowel Disease

  • Drug Mechanisms and Targets
  • Published:
BioDrugs Aims and scope Submit manuscript

Abstract

Crohn’s disease and ulcerative colitis are inflammatory bowel diseases (IBD) of unknown pathogenesis, for which no curative treatment is currently available. Although the recent introduction of agents designed to neutralise tumour necrosis factor has been an important achievement towards the control of Crohn’s disease, further development of more fundamental and non-toxic therapies is still required. One potential approach is the targeting of costimulatory membrane interactions between cells of the immune system. Costimulatory transmembrane ligands interact with receptors on target cells to enhance activation of the latter. Costimulatory interactions between antigen-presenting cells and T lymphocytes and between T lymphocytes and effector macrophages are of utmost importance for the activation of these cell types, which are all thought to be pivotal players in the immunopathology of IBD. Targeting these interactions with humanised monoclonal antibodies or soluble receptor fusion proteins is proposed as a potential new treatment modality of these often devastating pathologies. On the basis of experimental data, and in view of their essential role in the activation of antigen-presenting cells and T lymphocytes, the CD40/CD40 ligand and CD28/B7 interactions are likely to be the best targets for successful therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Table I
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bonen DK, Cho JH. The genetics of inflammatory bowel disease. Gastroenterology 2003 Feb; 124(2): 521–36

    Article  PubMed  CAS  Google Scholar 

  2. Fiocchi C. Inflammatory bowel disease: etiology and pathogenesis. Gastroenterology 1998 Jul; 115(1): 182–205

    Article  PubMed  CAS  Google Scholar 

  3. Papadakis KA, Targan SR. Current theories on the causes of inflammatory bowel disease. Gastroenterol Clin North Am 1999 Jun; 28(2): 283–96

    Article  PubMed  CAS  Google Scholar 

  4. Podolsky DK. Inflammatory bowel disease. N Engl J Med 2002 Aug 8; 347(6): 417–29

    Article  PubMed  CAS  Google Scholar 

  5. Geboes K. From inflammation to lesion. Acta Gastroenterol Belg 1994 Sep–Dec; 57(5-6): 273–84

    PubMed  CAS  Google Scholar 

  6. Geboes K, Riddell R, Ost A, et al. A reproducible grading scale for histological assessment of inflammation in ulcerative colitis. Gut 2000 Sep; 47(3): 404–9

    Article  PubMed  CAS  Google Scholar 

  7. Stronkhorst A, Radema S, Yong SL, et al. CD4 antibody treatment in patients with active Crohn’s disease: a phase I dose finding study. Gut 1997 Mar; 40(3): 320–7

    PubMed  CAS  Google Scholar 

  8. Breese EJ, Michie CA, Nicholls SW, et al. Tumor necrosis factor alpha-producing cells in the intestinal mucosa of children with inflammatory bowel disease. Gastroenterology 1994 Jun; 106(6): 1455–66

    PubMed  CAS  Google Scholar 

  9. Monteleone G, Biancone L, Marasco R, et al. Interleukin 12 is expressed and actively released by Crohn’s disease intestinal lamina propria mononuclear cells. Gastroenterology 1997 Apr; 112(4): 1169–78

    Article  PubMed  CAS  Google Scholar 

  10. Pizarro TT, Michie MH, Bentz M, et al. IL-18, a novel immunoregulatory cytokine, is up-regulated in Crohn’s disease: expression and localization in intestinal mucosal cells. J Immunol 1999 Jun 1; 162(11): 6829–35

    PubMed  CAS  Google Scholar 

  11. Camoglio L, Te Velde AA, Tigges AJ, et al. Altered expression of interferongamma and interleukin-4 in inflammatory bowel disease. Inflamm Bowel Dis 1998 Nov; 4(4): 285–90

    Article  PubMed  CAS  Google Scholar 

  12. Desreumaux P, Brandt E, Gambiez L, et al. Distinct cytokine patterns in early and chronic ileal lesions of Crohn’s disease. Gastroenterology 1997 Jul; 113(1): 118–26

    Article  PubMed  CAS  Google Scholar 

  13. Nielsen OH, Kirman I, Rudiger N, et al. Upregulation of interleukin-12 and -17 in active inflammatory bowel disease. Scand J Gastroenterol 2003 Feb; 38(2): 180–5

    Article  PubMed  CAS  Google Scholar 

  14. Pirzer U, Schonhaar A, Fleischer B, et al. Reactivity of infiltrating T lymphocytes with microbial antigens in Crohn’s disease. Lancet 1991 Nov 16; 338(8777): 1238–9

    Article  PubMed  CAS  Google Scholar 

  15. Duchmann R, May E, Heike M, et al. T cell specificity and cross reactivity towards enterobacteria, bacteroides, bifidobacterium, and antigens from resident intestinal flora in humans. Gut 1999 Jun; 44(6): 812–8

    Article  PubMed  CAS  Google Scholar 

  16. D’Haens GR, Geboes K, Peeters M, et al. Early lesions of recurrent Crohn’s disease caused by infusion of intestinal contents in excluded ileum. Gastroenterology 1998 Feb; 114(2): 262–7

    Article  PubMed  Google Scholar 

  17. Rutgeerts P, Goboes K, Peeters M, et al. Effect of faecal stream diversion on recurrence of Crohn’s disease in the neoterminal ileum. Lancet 1991 Sep 28; 338(8770): 771–4

    Article  PubMed  CAS  Google Scholar 

  18. Rutgeerts P, Hiele M, Geboes K, et al. Controlled trial of metronidazole treatment for prevention of Crohn’s recurrence after ileal resection. Gastroenterology 1995 Jun; 108(6): 1617–21

    Article  PubMed  CAS  Google Scholar 

  19. Colpaert S, Liu Z, De Greef B, et al. Effects of anti-tumour necrosis factor, interleukin-10 and antibiotic therapy in the indometacin-induced bowel inflammation rat model. Aliment Pharmacol Ther 2001 Nov; 15(11): 1827–36

    Article  PubMed  CAS  Google Scholar 

  20. Cresswell P, Howard JC. Antigen recognition. Curr Opin Immunol 1997 Feb; 9(1): 71–4

    Article  PubMed  CAS  Google Scholar 

  21. Tivol EA, Schweitzer AN, Sharpe AH. Costimulation and autoimmunity. Curr Opin Immunol 1996 Dec; 8(6): 822–30

    Article  PubMed  CAS  Google Scholar 

  22. Schwartz RH. A cell culture model for T lymphocyte clonal anergy. Science 1990 Jun 15; 248(4961): 1349–56

    Article  PubMed  CAS  Google Scholar 

  23. de Boer M, Kasran A, Kwekkeboom J, et al. Ligation of B7 with CD28/CTLA-4 on T cells results in CD40 ligand expression, interleukin-4 secretion and efficient help for antibody production by B cells. Eur J Immunol 1993 Dec; 23(12): 3120–5

    Article  PubMed  Google Scholar 

  24. Zhang YQ, Joost van Neerven RJ, Van Gool SW, et al. B7-CD28 interaction is a late acting co-stimulatory signal for human T cell responses. Int Immunol 1997 Aug; 9(8): 1095–102

    Article  PubMed  CAS  Google Scholar 

  25. Gross JA, Callas E, Allison JP. Identification and distribution of the costimulatory receptor CD28 in the mouse. J Immunol 1992 Jul 15; 149(2): 380–8

    PubMed  CAS  Google Scholar 

  26. Linsley PS, Ledbetter JA. The role of the CD28 receptor during T cell responses to antigen. Annu Rev Immunol 1993; 11: 191–212

    Article  PubMed  CAS  Google Scholar 

  27. Lenschow DJ, Walunas TL, Bluestone JA. CD28/B7 system of T cell costimulation. Annu Rev Immunol 1996; 14: 233–58

    Article  PubMed  CAS  Google Scholar 

  28. Van den Hove LE, Van Gool SW, Vandenberghe P, et al. CD40 triggering of chronic lymphocytic leukemia B cells results in efficient alloantigen presentation and cytotoxic T lymphocyte induction by up-regulation of CD80 and CD86 costimulatory molecules. Leukemia 1997 Apr; 11(4): 572–80

    Article  PubMed  CAS  Google Scholar 

  29. Salomon B, Bluestone JA. Complexities of CD28/B7: CTLA-4 costimulatory pathways in autoimmunity and transplantation. Annu Rev Immunol 2001; 19: 225–52

    Article  PubMed  CAS  Google Scholar 

  30. Mahnke K, Schmitt E, Bonifaz L, et al. Immature, but not inactive: the tolerogenic function of immature dendritic cells. Immunol Cell Biol 2002 Oct; 80(5): 477–83

    Article  PubMed  Google Scholar 

  31. Roy M, Waldschmidt T, Aruffo A, et al. The regulation of the expression of gp39, the CD40 ligand, on normal and cloned CD4+ T cells. J Immunol 1993 Sep 1; 151(5): 2497–510

    PubMed  CAS  Google Scholar 

  32. Lane P, Traunecker A, Hubele S, et al. Activated human T cells express a ligand for the human B cell-associated antigen CD40 which participates in T cell-dependent activation of B lymphocytes. Eur J Immunol 1992 Oct; 22(10): 2573–8

    Article  PubMed  CAS  Google Scholar 

  33. Peng X, Kasran A, Warmerdam PA, et al. Accessory signaling by CD40 for T cell activation: induction of Th1 and Th2 cytokines and synergy with interleukin-12 for interferon-gamma production. Eur J Immunol 1996 Jul; 26(7): 1621–7

    Article  PubMed  CAS  Google Scholar 

  34. Grewal IS, Flavell RA. CD40 and CD154 in cell-mediated immunity. Annu Rev Immunol 1998; 16: 111–35

    Article  PubMed  CAS  Google Scholar 

  35. Van Gool SW, Vandenberghe P, de Boer M, et al. CD80, CD86 and CD40 provide accessory signals in a multiple-step T-cell activation model. Immunol Rev 1996 Oct; 153: 47–83

    Article  PubMed  Google Scholar 

  36. Banchereau J, Bazan F, Blanchard D, et al. The CD40 antigen and its ligand. Annu Rev Immunol 1994; 12: 881–922

    Article  PubMed  CAS  Google Scholar 

  37. Foy TM, Aruffo A, Bajorath J, et al. Immune regulation by CD40 and its ligand GP39. Annu Rev Immunol 1996; 14: 591–617

    Article  PubMed  CAS  Google Scholar 

  38. Nusslein HG, Frosch KH, Woith W, et al. Increase of intracellular calcium is the essential signal for the expression of CD40 ligand. Eur J Immunol 1996 Apr; 26(4): 846–50

    Article  PubMed  CAS  Google Scholar 

  39. Skov S, Bonyhadi M, Odum N, et al. IL-2 and IL-15 regulate CD154 expression on activated CD4 T cells. J Immunol 2000 Apr 1; 164(7): 3500–5

    PubMed  CAS  Google Scholar 

  40. Peng X, Remacle JE, Kasran A, et al. IL-12 up-regulates CD40 ligand (CD154) expression on human T cells. J Immunol 1998 Feb 1; 160(3): 1166–72

    PubMed  CAS  Google Scholar 

  41. Yi-qun Z, Joost van Neerven RJ, Kasran A, et al. Differential requirements for costimulatory signals from B7 family members by resting versus recently activated memory T cells towards soluble recall antigens. Int Immunol 1996 Jan; 8(1): 37–44

    Article  PubMed  CAS  Google Scholar 

  42. Strober W, Fuss IJ, Blumberg RS. The immunology of mucosal models of inflammation. Annu Rev Immunol 2002; 20: 495–549

    Article  PubMed  CAS  Google Scholar 

  43. Sadlack B, Merz H, Schorle H, et al. Ulcerative colitis-like disease in mice with a disrupted interleukin-2 gene. Cell 1993 Oct 22; 75(2): 253–61

    Article  PubMed  CAS  Google Scholar 

  44. Sundberg JP, Elson CO, Bedigian H, et al. Spontaneous, heritable colitis in a new substrain of C3H/HeJ mice. Gastroenterology 1994 Dec; 107(6): 1726–35

    PubMed  CAS  Google Scholar 

  45. Grisham MB, Volkmer C, Tso P, et al. Metabolism of trinitrobenzene sulfonic acid by the rat colon produces reactive oxygen species. Gastroenterology 1991 Aug; 101(2): 540–7

    PubMed  CAS  Google Scholar 

  46. Bosma MJ, Carroll AM. The SCID mouse mutant: definition, characterization, and potential uses. Annu Rev Immunol 1991; 9: 323–50

    Article  PubMed  CAS  Google Scholar 

  47. Mombaerts P, Iacomini J, Johnson RS, et al. RAG-1-deficient mice have no mature B and T lymphocytes. Cell 1992 Mar 6; 68(5): 869–77

    Article  PubMed  CAS  Google Scholar 

  48. Morrissey PJ, Charrier K, Braddy S, et al. CD4+ T cells that express high levels of CD45RB induce wasting disease when transferred into congenic severe combined immunodeficient mice: disease development is prevented by cotransfer of purified CD4+ T cells. J Exp Med 1993 Jul 1; 178(1): 237–44

    Article  PubMed  CAS  Google Scholar 

  49. Powrie F, Correa-Oliveira R, Mauze S, et al. Regulatory interactions between CD45RBhigh and CD45RBlow CD4+ T cells are important for the balance between protective and pathogenic cell-mediated immunity. J Exp Med 1994 Feb 1; 179(2): 589–600

    Article  PubMed  CAS  Google Scholar 

  50. Powrie F, Leach MW, Mauze S, et al. Inhibition of Thl responses prevents inflammatory bowel disease in scid mice reconstituted with CD45RBhigh CD4+ T cells. Immunity 1994 Oct; 1(7): 553–62

    Article  PubMed  CAS  Google Scholar 

  51. Liu Z, Geboes K, Colpaert S, et al. Prevention of experimental colitis in SCID mice reconstituted with CD45RBhigh CD4+ T cells by blocking the CD40-CD154 interactions. J Immunol 2000 Jun 1; 164(11): 6005–14

    PubMed  CAS  Google Scholar 

  52. Ito H, Fathman CG. CD45RBhigh CD4+ T cells from IFN-gamma knockout mice do not induce wasting disease. J Autoimmun 1997 Oct; 10(5): 455–9

    Article  PubMed  CAS  Google Scholar 

  53. Mackay F, Browning JL, Lawton P, et al. Both the lymphotoxin and tumor necrosis factor pathways are involved in experimental murine models of colitis. Gastroenterology 1998 Dec; 115(6): 1464–75

    Article  PubMed  CAS  Google Scholar 

  54. Corazza N, Eichenberger S, Eugster HP, et al. Nonlymphocyte-derived tumor necrosis factor is required for induction of colitis in recombination activating gene (RAG)2(−/−) mice upon transfer of CD4(+)CD45RB(high) T cells. J Exp Med 1999 Nov 15; 190(10): 1479–92

    Article  PubMed  CAS  Google Scholar 

  55. Liu Z, Geboes K, Heremans H, et al. Role of interleukin-12 in the induction of mucosal inflammation and abrogation of regulatory T cell function in chronic experimental colitis. Eur J Immunol 2001 May; 31(5): 1550–60

    Article  PubMed  CAS  Google Scholar 

  56. Asseman C, Mauze S, Leach MW, et al. An essential role for interleukin 10 in the function of regulatory T cells that inhibit intestinal inflammation. J Exp Med 1999 Oct 4; 190(7): 995–1004

    Article  PubMed  CAS  Google Scholar 

  57. Read S, Malmstrom V, Powrie F. Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25(+)CD4(+) regulatory cells that control intestinal inflammation. J Exp Med 2000 Jul 17; 192(2): 295–302

    Article  PubMed  CAS  Google Scholar 

  58. Groux H, O’Garra A, Bigler M, et al. A CD4+ T-cell subset inhibits antigenspecific T-cell responses and prevents colitis. Nature 1997 Oct 16; 389(6652): 737–42

    Article  PubMed  CAS  Google Scholar 

  59. Battaglia E, Biancone L, Resegotti A, et al. Expression of CD40 and its ligand, CD40L, in intestinal lesions of Crohn’s disease. Am J Gastroenterol 1999 Nov; 94(11): 3279–84

    Article  PubMed  CAS  Google Scholar 

  60. Liu Z, Colpaert S, D’Haens GR, et al. Hyperexpression of CD40 ligand (CD154) in inflammatory bowel disease and its contribution to pathogenic cytokine production. J Immunol 1999 Oct 1; 163(7): 4049–57

    PubMed  CAS  Google Scholar 

  61. Polese L, Angriman I, Cecchetto A, et al. The role of CD40 in ulcerative colitis: histochemical analysis and clinical correlation. Eur J Gastroenterol Hepatol 2002 Mar; 14(3): 237–41

    Article  PubMed  Google Scholar 

  62. Sawada-Hase N, Kiyohara T, Miyagawa J, et al. An increased number of CD40-high monocytes in patients with Crohn’s disease. Am J Gastroenterol 2000 Jun; 95(6): 1516–23

    Article  PubMed  CAS  Google Scholar 

  63. Vuckovic S, Florin TH, Khalil D, et al. CD40 and CD86 upregulation with divergent CMRF44 expression on blood dendritic cells in inflammatory bowel diseases. Am J Gastroenterol 2001 Oct; 96(10): 2946–56

    Article  PubMed  CAS  Google Scholar 

  64. Liu Z, Geboes K, Colpaert S, et al. IL-15 is highly expressed in inflammatory bowel disease and regulates local T cell-dependent cytokine production. J Immunol 2000 Apr 1; 164(7): 3608–15

    PubMed  CAS  Google Scholar 

  65. Stuber E, Strober W, Neurath M. Blocking the CD40L-CD40 interaction in vivo specifically prevents the priming of T helper 1 cells through the inhibition of interleukin 12 secretion. J Exp Med 1996 Feb 1; 183(2): 693–8

    Article  PubMed  CAS  Google Scholar 

  66. De Jong YP, Comiskey M, Kalled SL, et al. Chronic murine colitis is dependent on the CD154/CD40 pathway and can be attenuated by anti-CD154 administration. Gastroenterology 2000 Sep; 119(3): 715–23

    Article  PubMed  Google Scholar 

  67. Clegg CH, Rulffes JT, Haugen HS, et al. Thymus dysfunction and chronic inflammatory disease in gp39 transgenic mice. Int Immunol 1997 Aug; 9(8): 1111–22

    Article  PubMed  CAS  Google Scholar 

  68. Cong Y, Brandwein SL, McCabe RP, et al. CD4+ T cells reactive to enteric bacterial antigens in spontaneously colitic C3H/HeJBir mice: increased T helper cell type 1 response and ability to transfer disease. J Exp Med 1998 Mar 16; 187(6): 855–64

    Article  PubMed  CAS  Google Scholar 

  69. Cong Y, Weaver CT, Lazenby A, et al. Colitis induced by enteric bacterial antigen-specific CD4+ T cells requires CD40-CD40 ligand interactions for a sustained increase in mucosal IL-12. J Immunol 2000 Aug 15; 165(4): 2173–82

    PubMed  CAS  Google Scholar 

  70. Liu Z, Geboes K, Hellings P, et al. B7 interactions with CD28 and CTLA-4 control tolerance or induction of mucosal inflammation in chronic experimental colitis. J Immunol 2001 Aug 1; 167(3): 1830–8

    PubMed  CAS  Google Scholar 

  71. Boone DL, Dassopoulos T, Lodolce JP, et al. Interleukin-2-deficient mice develop colitis in the absence of CD28 costimulation. Inflamm Bowel Dis 2002 Jan; 8(1): 35–42

    Article  PubMed  Google Scholar 

  72. Totsuka T, Kanai T, Iiyama R, et al. Ameliorating effect of anti-inducible costimulator monoclonal antibody in a murine model of chronic colitis. Gastro-enterology 2003 Feb; 124(2): 410–21

    Article  CAS  Google Scholar 

  73. De Jong YP, Coyle AJ, Tietdijk ST, et al. Blocking ICOS in combination with CD28 impairs the proper activation of aggressor TH1 cells but is not necessary for suppression by regulatory T cells [abstract]. Gastroenterology 2001; 120: A244

    Google Scholar 

  74. Higgins LM, McDonald SA, Whittle N, et al. Regulation of T cell activation in vitro and in vivo by targeting the OX40-OX40 ligand interaction: amelioration of ongoing inflammatory bowel disease with an OX40-IgG fusion protein, but not with an OX40 ligand-IgG fusion protein. J Immunol 1999 Jan 1; 162(1): 486–93

    PubMed  CAS  Google Scholar 

  75. Malmstrom V, Shipton D, Singh B, et al. CD134L expression on dendritic cells in the mesenteric lymph nodes drives colitis in T cell-restored SCID mice. J Immunol 2001 Jun 1; 166(11): 6972–81

    PubMed  CAS  Google Scholar 

  76. Totsuka T, Kanai T, Uraushihara K, et al. Therapeutic effect of anti-OX40L and anti-TNF-alpha mAbs in a murine model of chronic colitis. Am J Physiol Gastrointest Liver Physiol 2003 Apr; 284(4): G595–603

    PubMed  CAS  Google Scholar 

  77. Obermeier F, Schwarz H, Dunger N, et al. OX40/OX40 ligand interaction is critical for chronic intestinal inflammation in DSS-induced colitis in mice [abstract]. Gastroenterology 2002; 122: T964

    Google Scholar 

  78. Boumpas DT, Furie R, Manzi S, et al. A short course of BG9588 (anti-CD40 ligand antibody) improves serologic activity and decreases hematuria in patients with proliferative lupus glomerulonephritis. Arthritis Rheum 2003 Mar; 48(3): 719–27

    Article  PubMed  CAS  Google Scholar 

  79. Dumont FJ. IDEC-131: IDEC/Eisai. Curr Opin Investig Drugs 2002 May; 3(5): 725–34

    PubMed  CAS  Google Scholar 

  80. Smiley ST, Csizmadia V, Gao W, et al. Differential effects of cyclosporine A, methylprednisolone, mycophenolate, and rapamycin on CD154 induction and requirement for NFkappaB: implications for tolerance induction. Transplantation 2000 Aug 15; 70(3): 415–9

    Article  PubMed  CAS  Google Scholar 

  81. Rogler G, Hausmann M, Spottl T, et al. T-cell co-stimulatory molecules are upregulated on intestinal macrophages from inflammatory bowel disease mucosa. Eur J Gastroenterol Hepatol 1999 Oct; 11(10): 1105–11

    Article  PubMed  CAS  Google Scholar 

  82. Peetermans WE, D’Haens GR, Ceuppens JL, et al. Mucosal expression by B7-positive cells of the 60-kilodalton heat-shock protein in inflammatory bowel disease. Gastroenterology 1995 Jan; 108(1): 75–82

    Article  PubMed  CAS  Google Scholar 

  83. Ohshima Y, Tanaka Y, Tozawa H, et al. Expression and function of OX40 ligand on human dendritic cells. J Immunol 1997 Oct 15; 159(8): 3838–48

    PubMed  CAS  Google Scholar 

  84. Hershberg RM, Blumberg RS. What’s so (co)stimulating about the intestinal epithelium? Gastroenterology 1999 Sep; 117(3): 726–8

    Article  PubMed  CAS  Google Scholar 

  85. Rugtveit J, Bakka A, Brandtzaeg P. Differential distribution of B7.1 (CD80) and B7.2 (CD86) costimulatory molecules on mucosal macrophage subsets in human inflammatory bowel disease (IBD). Clin Exp Immunol 1997 Oct; 110(1): 104–13

    Article  PubMed  CAS  Google Scholar 

  86. Nakazawa A, Watanabe M, Kanai T, et al. Functional expression of costimulatory molecule CD86 on epithelial cells in the inflamed colonie mucosa. Gastroenterology 1999 Sep; 117(3): 536–45

    Article  PubMed  CAS  Google Scholar 

  87. Miller SD, Vanderlugt CL, Lenschow DJ, et al. Blockade of CD28/B7-1 interaction prevents epitope spreading and clinical relapses of murine EAE. Immunity 1995 Dec; 3(6): 739–45

    Article  PubMed  CAS  Google Scholar 

  88. Racke MK, Scott DE, Quigley L, et al. Distinct roles for B7-1 (CD-80) and B7-2 (CD-86) in the initiation of experimental allergic encephalomyelitis. J Clin Invest 1995 Nov; 96(5): 2195–203

    Article  PubMed  CAS  Google Scholar 

  89. Peterson KE, Sharp GC, Tang H, et al. B7.2 has opposing roles during the activation versus effector stages of experimental autoimmune thyroiditis. J Immunol 1999 Feb 1; 162(3): 1859–67

    PubMed  CAS  Google Scholar 

  90. Nakajima A, Azuma M, Kodera S, et al. Preferential dependence of autoantibody production in murine lupus on CD86 costimulatory molecule. Eur J Immunol 1995 Nov; 25(11): 3060–9

    Article  PubMed  CAS  Google Scholar 

  91. Lenschow DJ, Ho SC, Sattar H, et al. Differential effects of anti-B7-l and anti-B7-2 monoclonal antibody treatment on the development of diabetes in the nonobese diabetic mouse. J Exp Med 1995 Mar 1; 181(3): 1145–55

    Article  PubMed  CAS  Google Scholar 

  92. Chen Y, Song K, Eck SL. An intra-Peyer’s patch gene transfer model for studying mucosal tolerance: distinct roles of B7 and IL-12 in mucosal T cell tolerance. J Immunol 2000 Sep 15; 165(6): 3145–53

    PubMed  CAS  Google Scholar 

  93. Vandenborre K, Van Gool SW, Kasran A, et al. Interaction of CTLA-4 (CD 152) with CD80 or CD86 inhibits human T-cell activation. Immunology 1999 Nov; 98(3): 413–21

    Article  PubMed  CAS  Google Scholar 

  94. Tivol EA, Bordello F, Schweitzer AN, et al. Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity 1995 Nov; 3(5): 541–7

    Article  PubMed  CAS  Google Scholar 

  95. Linsley PS, Bradshaw J, Greene J, et al. Intracellular trafficking of CTLA-4 and focal localization towards sites of TCR engagement. Immunity 1996 Jun; 4(6): 535–43

    Article  PubMed  CAS  Google Scholar 

  96. Chambers CA, Kuhns MS, Egen JG, et al. CTLA-4-mediated inhibition in regulation of T cell responses: mechanisms and manipulation in tumor immunotherapy. Annu Rev Immunol 2001; 19: 565–94

    Article  PubMed  CAS  Google Scholar 

  97. Salomon B, Lenschow DJ, Rhee L, et al. B7/CD28 costimulation is essential for the homeostasis of the CD4+CD25+ immunoregulatory T cells that control autoimmune diabetes. Immunity 2000 Apr; 12(4): 431–40

    Article  PubMed  CAS  Google Scholar 

  98. Manzotti CN, Tipping H, Perry LC, et al. Inhibition of human T cell proliferation by CTLA-4 utilizes CD80 and requires CD25+ regulatory T cells. Eur J Immunol 2002 Oct; 32(10): 2888–96

    Article  PubMed  CAS  Google Scholar 

  99. Greenwald RJ, Boussiotis VA, Lorsbach RB, et al. CTLA-4 regulates induction of anergy in vivo. Immunity 2001 Feb; 14(2): 145–55

    Article  PubMed  CAS  Google Scholar 

  100. Chen W, Jin W, Wahl SM. Engagement of cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) induces transforming growth factor beta (TGF-beta) production by murine CD4(+) T cells. J Exp Med 1998 Nov 16; 188(10): 1849–57

    Article  PubMed  CAS  Google Scholar 

  101. Hellings PW, Vandenberghe P, Kasran A, et al. Blockade of CTLA-4 enhances allergic sensitization and eosinophilic airway inflammation in genetically predisposed mice. Eur J Immunol 2002 Feb; 32(2): 585–94

    Article  PubMed  CAS  Google Scholar 

  102. Jonker M, Ossevoort MA, Vierboom M. Blocking the CD80 and CD86 costimulation molecules: lessons to be learned from animal models. Transplantation 2002 Jan 15; 73(1 Suppl.): S23–6

    Article  PubMed  CAS  Google Scholar 

  103. Webb LM, Walmsley MJ, Feldmann M. Prevention and amelioration of collagen-induced arthritis by blockade of the CD28 co-stimulatory pathway: requirement for both B7-1 and B7-2. Eur J Immunol 1996 Oct; 26(10): 2320–8

    Article  PubMed  CAS  Google Scholar 

  104. Abrams JR, Lebwohl MG, Guzzo CA, et al. CTLA4Ig-mediated blockade of T-cell costimulation in patients with psoriasis vulgaris. J Clin Invest 1999 May; 103(9): 1243–52

    Article  PubMed  CAS  Google Scholar 

  105. Moreland LW, Alten R, Van den Bosch F, et al. Costimulatory blockade in patients with rheumatoid arthritis: a pilot, dose-finding, double-blind, placebo-controlled clinical trial evaluating CTLA-4Ig and LEA29Y eighty-five days after the first infusion. Arthritis Rheum 2002 Jun; 46(6): 1470–9

    Article  PubMed  CAS  Google Scholar 

  106. Kremer J, Westhovens R, Leon M, et al. Treatment of rheumatoid arthritis by prevention of T cell activation with fusion protein CTLA-4 Ig. N Engl J Med. In press

  107. Mages HW, Hutloff A, Heuck C, et al. Molecular cloning and characterization of murine ICOS and identification of B7h as ICOS ligand. Eur J Immunol 2000 Apr; 30(4): 1040–7

    Article  PubMed  CAS  Google Scholar 

  108. Beier KC, Hutloff A, Dittrich AM, et al. Induction, binding specificity and function of human ICOS. Eur J Immunol 2000 Dec; 30(12): 3707–17

    Article  PubMed  CAS  Google Scholar 

  109. Hutloff A, Dittrich AM, Beier KC, et al. ICOS is an inducible T-cell co-stimulator structurally and functionally related to CD28. Nature 1999 Jan 21; 397(6716): 263–6

    Article  PubMed  CAS  Google Scholar 

  110. Aicher A, Hayden-Ledbetter M, Brady WA, et al. Characterization of human inducible costimulator ligand expression and function. J Immunol 2000 May 1; 164(9): 4689–96

    PubMed  CAS  Google Scholar 

  111. Ling V, Wu PW, Finnerty HF, et al. Cutting edge: identification of GL50, a novel B7-like protein that functionally binds to ICOS receptor. J Immunol 2000 Feb 15; 164(4): 1653–7

    PubMed  CAS  Google Scholar 

  112. Yoshinaga SK, Whoriskey JS, Khare SD, et al. T-cell co-stimulation through B7RP-1 and ICOS. Nature 1999 Dec 16; 402(6763): 827–32

    Article  PubMed  CAS  Google Scholar 

  113. Sperling AI, Bluestone JA. ICOS costimulation: it’s not just for TH2 cells anymore. Nat Immunol 2001 Jul; 2(7): 573–4

    Article  PubMed  CAS  Google Scholar 

  114. Dong C, Juedes AE, Temann UA, et al. ICOS co-stimulatory receptor is essential for T-cell activation and function. Nature 2001 Jan 4; 409(6816): 97–101

    Article  PubMed  CAS  Google Scholar 

  115. Bonhagen K, Liesenfeld O, Stadecker MJ, et al. ICOS+ Th cells produce distinct cytokines in different mucosal immune responses. Eur J Immunol 2003 Feb; 33(2): 392–401

    Article  PubMed  CAS  Google Scholar 

  116. Latza U, Durkop H, Schnittger S, et al. The human OX40 homolog: cDNA structure, expression and chromosomal assignment of the ACT35 antigen. Eur J Immunol 1994 Mar; 24(3): 677–83

    Article  PubMed  CAS  Google Scholar 

  117. Baum PR, Gayle III RB, Ramsdell F, et al. Molecular characterization of murine and human OX40/OX40 ligand systems: identification of a human OX40 ligand as the HTLV-1-regulated protein gp34. EMBO J 1994 Sep 1; 13(17): 3992–4001

    PubMed  CAS  Google Scholar 

  118. Weinberg AD, Wallin JJ, Jones RE, et al. Target organ-specific up-regulation of the MRC OX-40 marker and selective production of Th1 lymphokine mRNA by encephalitogenic T helper cells isolated from the spinal cord of rats with experimental autoimmune encephalomyelitis. J Immunol 1994 May 1; 152(9): 4712–21

    PubMed  CAS  Google Scholar 

  119. Gramaglia I, Weinberg AD, Lemon M, et al. OX-40 ligand: a potent costimulatory molecule for sustaining primary CD4 T cell responses. J Immunol 1998 Dec 15; 161(12): 6510–7

    PubMed  CAS  Google Scholar 

  120. Gramaglia I, Jember A, Pippig SD, et al. The OX40 costimulatory receptor determines the development of CD4 memory by regulating primary clonal expansion. J Immunol 2000 Sep 15; 165(6): 3043–50

    PubMed  CAS  Google Scholar 

  121. Murata K, Ishii N, Takano H, et al. Impairment of antigen-presenting cell function in mice lacking expression of OX40 ligand. J Exp Med 2000 Jan 17; 191(2): 365–74

    Article  PubMed  CAS  Google Scholar 

  122. Rogers PR, Song J, Gramaglia I, et al. OX40 promotes Bcl-xL and Bcl-2 expression and is essential for long-term survival of CD4 T cells. Immunity 2001 Sep; 15(3): 445–55

    Article  PubMed  CAS  Google Scholar 

  123. Miura S, Ohtani K, Numata N, et al. Molecular cloning and characterization of a novel glycoprotein, gp34, that is specifically induced by the human T-cell leukemia virus type I transactivator p40tax. Mol Cell Biol 1991 Mar; 11(3): 1313–25

    PubMed  CAS  Google Scholar 

  124. Weinberg AD, Vella AT, Croft M. OX-40: life beyond the effector T cell stage. Semin Immunol 1998 Dec; 10(6): 471–80

    Article  PubMed  CAS  Google Scholar 

  125. Souza HS, Elia CC, Spencer J, et al. Expression of lymphocyte-endothelial receptor-ligand pairs, alpha4beta7/MAdCAM-l and OX40/OX40 ligand in the colon and jejunum of patients with inflammatory bowel disease. Gut 1999 Dec; 45(6): 856–63

    Article  PubMed  CAS  Google Scholar 

  126. Stuber E, Neurath M, Calderhead D, et al. Cross-linking of OX40 ligand, a member of the TNF/NGF cytokine family, induces proliferation and differentiation in murine splenic B cells. Immunity 1995 May; 2(5): 507–21

    Article  CAS  Google Scholar 

  127. Matsumura Y, Imura A, Hori T, et al. Localization of OX40/gp34 in inflammatory skin diseases: a clue to elucidate the interaction between activated T cells and endothelial cells in infiltration. Arch Dermatol Res 1997 Oct; 289(11): 653–6

    Article  PubMed  CAS  Google Scholar 

  128. Stuber E, Buschenfeld A, Luttges J, et al. The expression of OX40 in immunologically mediated diseases of the gastrointestinal tract (celiac disease, Crohn’s disease, ulcerative colitis). Eur J Clin Invest 2000 Jul; 30(7): 594–9

    Article  PubMed  CAS  Google Scholar 

  129. Wang HC, Klein JR. Multiple levels of activation of murine CD8(+) intraepithelial lymphocytes defined by OX40 (CD134) expression: effects on cell-mediated cytotoxicity, IFN-gamma, and IL-10 regulation. J Immunol 2001 Dec 15; 167(12): 6717–23

    PubMed  CAS  Google Scholar 

  130. Taylor L, Bachler M, Duncan I, et al. In vitro and in vivo activities of OX40 (CD134)-IgG fusion protein isoforms with different levels of immune-effector functions. J Leukoc Biol 2002 Sep; 72(3): 522–9

    PubMed  CAS  Google Scholar 

  131. Weinberg AD, Bourdette DN, Sullivan TJ, et al. Selective depletion of myelinreactive T cells with the anti-OX-40 antibody ameliorates autoimmune encephalomyelitis. Nat Med 1996 Feb; 2(2): 183–9

    Article  PubMed  CAS  Google Scholar 

  132. Schwarz H, Valbracht J, Tuckwell J, et al. ILA, the human 4-1BB homologue, is inducible in lymphoid and other cell lineages. Blood 1995 Feb 15; 85(4): 1043–52

    PubMed  CAS  Google Scholar 

  133. Melero I, Johnston JV, Shufford WW, et al. NK1.1 cells express 4-1BB (CDwl37) costimulatory molecule and are required for tumor immunity elicited by anti-4-1BB monoclonal antibodies. Cell Immunol 1998 Dec 15; 190(2): 167–72

    Article  PubMed  CAS  Google Scholar 

  134. Wilcox RA, Chapoval AI, Gorski KS, et al. Cutting edge: expression of functional CD137 receptor by dendritic cells. J Immunol 2002 May 1; 168(9): 4262–7

    PubMed  CAS  Google Scholar 

  135. Kienzle G, von Kempis J. CD 137 (ILA/4-1BB), expressed by primary human monocytes, induces monocyte activation and apoptosis of B lymphocytes. Int Immunol 2000 Jan; 12(1): 73–82

    Article  PubMed  CAS  Google Scholar 

  136. Wen T, Bukczynski J, Watts TH. 4-1BB ligand-mediated costimulation of human T cells induces CD4 and CD8 T cell expansion, cytokine production, and the development of cytolytic effector function. J Immunol 2002 May 15; 168(10): 4897–906

    PubMed  CAS  Google Scholar 

  137. Gramaglia I, Cooper D, Miner KT, et al. Co-stimulation of antigen-specific CD4 T cells by 4-1BB ligand. Eur J Immunol 2000 Feb; 30(2): 392–402

    Article  PubMed  CAS  Google Scholar 

  138. Cannons JL, Lau P, Ghumman B, et al. 4-1BB ligand induces cell division, sustains survival, and enhances effector function of CD4 and CD8 T cells with similar efficacy. J Immunol 2001 Aug 1; 167(3): 1313–24

    PubMed  CAS  Google Scholar 

  139. DeBenedette MA, Wen T, Bachmann MF, et al. Analysis of 4-1BB ligand (4-lBBL)-deficient mice and of mice lacking both 4-1BBL and CD28 reveals a role for 4-1BBL in skin allograft rejection and in the cytotoxic T cell response to influenza virus. J Immunol 1999 Nov 1; 163(9): 4833–41

    PubMed  CAS  Google Scholar 

  140. Michel J, Pauly S, Langstein J, et al. CD137-induced apoptosis is independent of CD95. Immunology 1999 Sep; 98(1): 42–6

    Article  PubMed  CAS  Google Scholar 

  141. Mittler RS, Bailey TS, Klussman K, et al. Anti-4-1BB monoclonal antibodies abrogate T cell-dependent humoral immune responses in vivo through the induction of helper T cell anergy. J Exp Med 1999 Nov 15; 190(10): 1535–40

    Article  PubMed  CAS  Google Scholar 

  142. Bertram EM, Lau P, Watts TH. Temporal segregation of 4-1BB versus CD28-mediated costimulation: 4-1BB ligand influences T cell numbers late in the primary response and regulates the size of the T cell memory response following influenza infection. J Immunol 2002 Apr 15; 168(8): 3777–85

    PubMed  CAS  Google Scholar 

  143. Vinay DS, Kwon BS. Role of 4-1BB in immune responses. Semin Immunol 1998 Dec; 10(6): 481–9

    Article  PubMed  CAS  Google Scholar 

  144. Langstein J, Michel J, Fritsche J, et al. CD137 (ILA/4-1BB), a member of the TNF receptor family, induces monocyte activation via bidirectional signaling. J Immunol 1998 Mar 1; 160(5): 2488–94

    PubMed  CAS  Google Scholar 

  145. Langstein J, Schwarz H. Identification of CD137 as a potent monocyte survival factor. J Leukoc Biol 1999 Jun; 65(6): 829–33

    PubMed  CAS  Google Scholar 

  146. Zhou Z, Pollok KE, Kim KK, et al. Functional analysis of T-cell antigen 4-1BB in activated intestinal intra-epithelial T lymphocytes. Immunol Lett 1994 Jul; 41(2-3): 177–84

    Article  PubMed  CAS  Google Scholar 

  147. Van Gool SW, Barcy S, Devos S, et al. CD80 (B7-1) and CD86 (B7-2): potential targets for immunotherapy? Res Immunol 1995 Mar–Apr; 146(3): 183–96

    Article  PubMed  Google Scholar 

  148. Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature 1998 Mar 19; 392(6673): 245–52

    Article  PubMed  CAS  Google Scholar 

  149. Inohara N, Nunez G. NODs: intracellular proteins involved in inflammation and apoptosis. Nat Rev Immunol 2003 May; 3(5): 371–82

    Article  PubMed  CAS  Google Scholar 

  150. Scallon BJ, Moore MA, Trinh H, et al. Chimeric anti-TNF-alpha monoclonal antibody cA2 binds recombinant transmembrane TNF-alpha and activates immune effector functions. Cytokine 1995 Apr; 7(3): 251–9

    Article  PubMed  CAS  Google Scholar 

  151. Ten Hove T, Van Montfrans C, Peppelenbosch MP, et al. Infliximab treatment induces apoptosis of lamina propria T lymphocytes in Crohn’s disease. Gut 2002 Feb; 50(2): 206–11

    Article  Google Scholar 

  152. Lugering A, Schmidt M, Lugering N, et al. Infliximab induces apoptosis in monocytes from patients with chronic active Crohn’s disease by using a caspase-dependent pathway. Gastroenterology 2001 Nov; 121(5): 1145–57

    Article  PubMed  CAS  Google Scholar 

  153. Larsen CP, Elwood ET, Alexander DZ, et al. Long-term acceptance of skin and cardiac allografts after blocking CD40 and CD28 pathways. Nature 1996 May 30; 381(6581): 434–8

    Article  PubMed  CAS  Google Scholar 

  154. Van Gool SW, Vermeiren J, Rafiq K, et al. Blocking CD40-CD154 and CD80/ CD86-CD28 interactions during primary allogeneic stimulation results in T cell anergy and high IL-10 production. Eur J Immunol 1999 Aug; 29(8): 2367–75

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Foundation of Scientific Research Flanders (FWO Vlaanderen) and from the Research Council of the Catholic University of Leuven and by Schering-Plough IBD fellowships to Philippe Maerten and to Zhanju Liu. The authors have provided no information on conflicts of interest that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan L. Ceuppens.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maerten, P., Liu, Z. & Ceuppens, J.L. Targeting of Costimulatory Molecules as a Therapeutic Approach in Inflammatory Bowel Disease. BioDrugs 17, 395–411 (2003). https://doi.org/10.2165/00063030-200317060-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00063030-200317060-00003

Keywords

Navigation