Skip to main content
Log in

Genetics of Response to Proton Pump Inhibitor Therapy

Clinical Implications

  • Practical Pharmacogenomics
  • Published:
American Journal of Pharmacogenomics

Abstract

Proton pump inhibitors (PPIs) are highly effective agents for the treatment of gastric acid-related disorders. They are metabolized by the cytochrome P450 (CYP) system, mainly via the enzyme CYP2C19. A genetically determined defect in this pathway results in impaired metabolism of PPIs, giving rise to three distinct phenotypes: rapid extensive (fast), extensive (medium), and poor (slow) metabolizers. These genetic mutations are more common in certain races, and there is, therefore, considerable inter-individual and -ethnic variation in the capacity to metabolize PPIs.

The incidence of mutant alleles in a population treated for acid-related disorders may influence the efficacy of the treatment, with clinical implications for the prescribers of PPIs. Therapeutic failure, such as lack of symptom relief, or ineffective Helicobacter pylori eradication, can occur in rapid metabolizers who will have less available drug at a given dose. Conversely, poor metabolizers may be at risk of over-treatment, with increased incidence of adverse effects and unnecessary financial burden.

Approaches to this problem include phenotyping or, preferably, genotyping patients prior to treatment with PPIs. This will allow tailoring dose regimens to the individual’s metabolic capacity. An alternative strategy is the development of drugs that are either metabolized by genotype-independent pathways or are less susceptible to inter-individual genetic variation. Non-racemic PPIs fall into the latter category, and the first such agent, esomeprazole, is now commercially available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Table II
Table III

Similar content being viewed by others

References

  1. Egan LJ, Murray JA. New perspectives in gastric acid suppression: genetic polymorphisms predict the efficacy of proton pump inhibitors. Dig Dis 2000; 18(2): 58–63

    Article  PubMed  CAS  Google Scholar 

  2. Rodrigues AD, Rushmore TH. Cytochrome P450 pharmacogenetics in drug development: in vitro studies and clinical consequences. Curr Drug Metab 2002 Jun; 3(3): 289–309

    Article  PubMed  CAS  Google Scholar 

  3. Kupfer A, Desmond P, Schenker S, et al. Family study of genetically determined deficiency of mephenytoin hydroxylation in man [abstract]. Pharmacologist 1979; 21: 173

    Google Scholar 

  4. Wrighton SA, Stevens JC, Becker GW, et al. Isolation and characterisation of human liver cytochrome P450 2C19: correlation between 2C19 and S-mephenytoin 4’-hydroxylation. Arch Biochem Biophys 1993; 306: 240–5

    Article  PubMed  CAS  Google Scholar 

  5. de Morais SM, Wilkinson GR, Blaisdell J, et al. The major genetic defect responsible for the polymorphism of S-mephenytoin metabolism in humans. J Biol Chem 1994 Jun 3; 269(22): 15419–22

    PubMed  Google Scholar 

  6. De Morais SM, Wilkinson GR, Blaisdell J, et al. Identification of a new genetic defect responsible for the polymorphism of (S)-mephenytoin metabolism in Japanese. Mol Pharmacol 1994 Oct; 46(4): 594–8

    PubMed  Google Scholar 

  7. Xiao ZS, Goldstein JA, Xie HG, et al. Differences in the incidence of the CYP2C19 polymorphism affecting the S-mephenytoin phenotype in Chinese Han and Bai populations and identification of a new rare CYP2C19 mutant allele. J Pharmacol Exp Ther 1997 Apr; 281(1): 604–9

    PubMed  CAS  Google Scholar 

  8. Ferguson RJ, De Morais SM, Benhamou S, et al. A new genetic defect in human CYP2C19: mutation of the initiation codon is responsible for poor metabolism of S-mephenytoin. J Pharmacol Exp Ther 1998 Jan; 284(1): 356–61

    PubMed  CAS  Google Scholar 

  9. Ibeanu GC, Blaisdell J, Ghanayem BI, et al. An additional defective allele, CYP2C19*5, contributes to the S-mephenytoin poor metaboliser phenotype in Caucasians. Pharmacogenetics 1998 Apr; 8(2): 129–35

    Article  PubMed  CAS  Google Scholar 

  10. Ibeanu GC, Goldstein JA, Meyer U, et al. Identification of new human CYP2C19 alleles (CYP2C19*6 and CYP2C19*2B) in a Caucasian poor metaboliser of mephenytoin. J Pharmacol Exp Ther 1998 Sep; 286(3): 1490–5

    PubMed  CAS  Google Scholar 

  11. Ibeanu GC, Blaisdell J, Ferguson RJ, et al. A novel transversion in the intron 5 donor splice junction of CYP2C19 and a sequence polymorphism in exon 3 contribute to the poor metabolizer phenotype for the anticonvulsant drug S-mephenytoin. J Pharmacol Exp Ther 1999 Aug; 290(2): 635–40

    PubMed  CAS  Google Scholar 

  12. Blaisdell J, Mohrenweiser H, Jackson J, et al. Identification and functional characterization of new potentially defective alleles of human CYP2C19. Pharmacogenetics 2002 Dec; 12(9): 703–11

    Article  PubMed  CAS  Google Scholar 

  13. Chang M, Tybring G, Dahl ML, et al. Interphenotype differences in disposition and effect on gastrin levels of omeprazole: suitability of omeprazole as a probe for CYP2C19. Br J Clin Pharmacol 1995 May; 39(5): 511–8

    Article  PubMed  CAS  Google Scholar 

  14. Wong JY, Seah ES, Lee EJ. Pharmacogenetics: the molecular genetics of CYP2D6 dependent drug metabolism. Ann Acad Med Singapore 2000 May; 29(3): 401–6

    PubMed  CAS  Google Scholar 

  15. Zhou HH. CYP2C19 genotype determines enzyme activity and inducibility of S-mephenytoin hydroxylase. Clin Chim Acta 2001 Nov; 313(1-2): 203–8

    Article  PubMed  CAS  Google Scholar 

  16. Streetman DS, Bertino Jr JS, Nafziger AN. Phenotyping of drug-metabolizing enzymes in adults: a review of in-vivo cytochrome P450 phenotyping probes. Pharmacogenetics 2000 Apr; 10(3): 187–216

    Article  PubMed  CAS  Google Scholar 

  17. Chang M, Dahl ML, Tybring G, et al. Use of omeprazole as a probe drug for CYP2C19 phenotype in Swedish Caucasians: comparison with S-mephenytoin hydroxylation phenotype and CYP2C19 genotype. Pharmacogenetics 1995 Dec; 5(6): 358–63

    Article  PubMed  CAS  Google Scholar 

  18. Shu Y, Wang LS, Xiao WM, et al. Probing CYP2C19 and CYP3A4 activities in Chinese liver microsomes by quantification of 5-hydroxyomeprazole and omeprazole sulphone. Acta Pharmacol Sin 2000 Aug; 21(8): 753–8

    PubMed  CAS  Google Scholar 

  19. Kovacs P, Edwards DJ, Lalka D, et al. High-dose omeprazole: use of a multiple-dose study design to assess bioequivalence and accuracy of CYP2C19 phenotyping. Ther Drug Monit 1999 Oct; 21(5): 526–31

    Article  PubMed  CAS  Google Scholar 

  20. Wedlund PJ. The CYP2C19 enzyme polymorphism. Pharmacology. 2000 Sep; 61(3): 174–83

    Article  PubMed  CAS  Google Scholar 

  21. Hiratsuka M. Development of simplified and rapid detection assay for genetic polymorphisms influencing drug response and its clinical applications. Yakugaku Zasshi 2002 Jul; 122(7): 451–63

    Article  PubMed  CAS  Google Scholar 

  22. Caraco Y. Genetic determinants of drug responsiveness and drug interactions. Ther Drug Monit 1998 Oct; 20(5): 517–24

    Article  PubMed  CAS  Google Scholar 

  23. Bertilsson L, Dahl ML, Tybring G. Pharmacogenetics of antidepressants: clinical aspects. 30: Acta Psychiatr Scand Suppl 1997; 391: 14–21

    Article  CAS  Google Scholar 

  24. Desta Z, Zhao X, Shin JG, et al. Clinical significance of the cytochrome P450 2C19 genetic polymorphism. Clin Pharmacokinet 2002; 41(12): 913–58

    Article  PubMed  CAS  Google Scholar 

  25. Cichon S, Nothen MM, Rietschel M, et al. Pharmacogenetics of schizophrenia. Am J Med Genet 2000 Spring; 97(1): 98–106

    Article  PubMed  CAS  Google Scholar 

  26. Dickson EJ, Morris AJ, Craig C, et al. The response to proton pump inhibitor therapy is genetically determined [abstract]. Gut 2002, 50Suppl. 11; A68

    Google Scholar 

  27. Yamada S, Onda M, Kato S, et al. Genetic differences in CYP2C19 single nucleotide polymorphisms among four Asian populations. J Gastroenterol 2001 Oct; 36(10): 669–72

    Article  PubMed  CAS  Google Scholar 

  28. Britzi M, Bialer M, Arcavi L, et al. Genetic polymorphism of CYP2D6 and CYP2C19 metabolism determined by phenotyping Israeli ethnic groups. Ther Drug Monit 2000 Oct; 22(5): 510–6

    Article  PubMed  CAS  Google Scholar 

  29. Xie HG, Stein CM, Kim RB, et al. Allelic, genotypic and phenotypic distributions of S-mephenytoin 4’-hydroxylase (CYP2C19) in healthy Caucasian populations of European descent throughout the world. Pharmacogenetics 1999 Oct; 9(5): 539–49

    Article  PubMed  CAS  Google Scholar 

  30. Takakubo F, Kuwano A, Kondo I. Evidence that poor metabolizers of (S)-mephenytoin could be identified by haplotypes of CYP2C19 in Japanese. Pharmacogenetics 1996 Jun; 6(3): 265–7

    Article  PubMed  CAS  Google Scholar 

  31. Kaneko A, Lum JK, Yaviong L, et al. High and variable frequencies of CYP2C19 mutations: medical consequences of poor drug metabolism in Vanuatu and other Pacific islands. Pharmacogenetics 1999 Oct; 9(5): 581–90

    Article  PubMed  CAS  Google Scholar 

  32. Lamba JK, Dhiman RK, Singh R, et al. Correlation between omeprazole hydroxylase and CYP2C19 genotype in North Indians. Eur J Clin Pharmacol 2001 Nov; 57(9): 649–52

    Article  PubMed  CAS  Google Scholar 

  33. Lamba JK, Dhiman RK, Kohli KK. Genetic polymorphism of the hepatic cytochrome P450 2C19 in north Indian subjects. Clin Pharmacol Ther 1998; 63(4): 422–7

    Article  PubMed  CAS  Google Scholar 

  34. Lamba JK, Dhiman RK, Kohli KK. CYP2C19 genetic mutations in North Indians. Clin Pharmacol Ther 2000 Sep; 68(3): 328–35

    Article  PubMed  CAS  Google Scholar 

  35. Tassaneeyakul W, Tawalee A, Tassaneeyakul W, et al. Analysis of the CYP2C19 polymorphism in a North-Eastern Thai population. Pharmacogenetics 2002 Apr; 12(3): 221–5

    Article  PubMed  CAS  Google Scholar 

  36. He N, Yan FX, Huang SL, et al. CYP2C19 genotype and S-mephenytoin 4’-hydroxylation phenotype in a Chinese Dai population. Eur J Clin Pharmacol 2002 Apr; 58(1): 15–8

    Article  PubMed  CAS  Google Scholar 

  37. Dandara C, Masimirembwa CM, Magimba A, et al. Genetic polymorphism of CYP2D6 and CYP2C19 in east- and southern African populations including psychiatric patients. Eur J Clin Pharmacol 2001 Apr; 57(1): 11–7

    Article  PubMed  CAS  Google Scholar 

  38. Herrlin K, Massele AY, Jande M, et al. Bantu Tanzanians have a decreased capacity to metabolize omeprazole and mephenytoin in relation to their CYP2C19 genotype. Clin Pharmacol Ther 1998 Oct; 64(4): 391–401

    Article  PubMed  CAS  Google Scholar 

  39. Herrlin K, Massele AY, Rimoy G, et al. Slow chloroguanide metabolism in Tanzanians compared with white subjects and Asian subjects confirms a decreased CYP2C19 activity in relation to genotype. Clin Pharmacol Ther 2000 Aug; 68(2): 189–98

    Article  PubMed  CAS  Google Scholar 

  40. Gaedigk A. Interethnic differences of drug-metabolizing enzymes. Int J Clin Pharmacol Ther 2000 Feb; 38(2): 61–8

    PubMed  CAS  Google Scholar 

  41. Yasuda S, Horai Y, Tomono Y, et al. Comparison of the kinetic disposition and metabolism of E3810, a new proton pump inhibitor, and omeprazole in relation to S-mephenytoin 4’-hydroxylation status. Clin Pharmacol Ther 1995 Aug; 58(2): 143–54

    Article  PubMed  CAS  Google Scholar 

  42. VandenBranden M, Ring BJ, Binkley SN, et al. Interaction of human liver cytochromes P450 in vitro with LY307640, a gastric proton pump inhibitor. Pharmacogenetics 1996 Feb; 6(1): 81–91

    Article  Google Scholar 

  43. Horai Y, Kimura M, Furuie H, et al. Pharmacodynamic effects and kinetic disposition of rabeprazole in relation to CYP2C19 genotypes. Aliment Pharmacol Ther 2001 Jun; 15(6): 793–803

    Article  PubMed  CAS  Google Scholar 

  44. Sakai T, Aoyama N, Kita T, et al. CYP2C19 genotype and pharmacokinetics of three proton pump inhibitors in healthy subjects. Pharm Res 2001 Jun; 18(6): 721–7

    Article  PubMed  CAS  Google Scholar 

  45. Fuhr U, Jetter A. Rabeprazole: pharmacokinetics and pharmacokinetic drug interactions. Pharmazie 2002 Sep; 57(9): 595–601

    PubMed  CAS  Google Scholar 

  46. Katsuki H, Hamada A, Nakamura C, et al. Role of CYP3A4 and CYP2C19 in the stereoselective metabolism of lansoprazole by human liver microsomes. Eur J Clin Pharmacol 2001 Dec; 57(10): 709–15

    Article  PubMed  CAS  Google Scholar 

  47. Kim KA, Shon JH, Park JY, et al. Enantioselective disposition of lansoprazole in extensive and poor metabolizers of CYP2C19. Clin Pharmacol Ther 2002 Jul; 72(1): 90–9

    Article  PubMed  CAS  Google Scholar 

  48. Tanaka M, Ohkubo T, Otani K, et al. Metabolic disposition of pantoprazole, a proton pump inhibitor, in relation to S-mephenytoin 4’-hydroxylation phenotype and genotype. Clin Pharmacol Ther 1997 Dec; 62(6): 619–28

    Article  PubMed  CAS  Google Scholar 

  49. Tanaka M, Ohkubo T, Otani K, et al. Stereoselective pharmacokinetics of pantoprazole, a proton pump inhibitor, in extensive and poor metabolizers of S-mephenytoin. Clin Pharmacol Ther 2001 Mar; 69(3): 108–13

    Article  PubMed  CAS  Google Scholar 

  50. Andersson T, Hassan-Alin M, Hasselgren G, et al. Pharmacokinetic studies with esomeprazole, the (S)-isomer of omeprazole. Clin Pharmacokinet. 2001; 40(6): 411–26

    Article  PubMed  CAS  Google Scholar 

  51. Kale-Pradhan PB, Landry HK, Sypula WT. Esomeprazole for acid peptic disorders. Ann Pharmacother 2002 Apr; 36(4): 655–63

    Article  PubMed  CAS  Google Scholar 

  52. Gerson LB, Triadafilopoulos G. Proton pump inhibitors and their drug interactions: an evidence-based approach. Eur J Gastroenterol Hepatol 2001 May; 13(5): 611–6

    Article  PubMed  CAS  Google Scholar 

  53. Ozawa S. Drug-drug interaction in pharmacogenetics and pharmacogenomics [in Japanese]. Rinsho Byori 2002 Feb; 50(2): 146–50

    PubMed  CAS  Google Scholar 

  54. Andersson T, Hassan-Alin M, Hasselgren G, et al. Drug interaction studies with esomeprazole, the (S)-isomer of omeprazole. Clin Pharmacokinet 2001; 40(7): 523–37

    Article  PubMed  CAS  Google Scholar 

  55. Funck-Brentano C, Becquemont L, Lenevu A, et al. Inhibition by omeprazole of proguanil metabolism: mechanism of the interaction in vitro and prediction of in vivo results from the in vitro experiments. J Pharmacol Exp Ther 1997 Feb; 280(2): 730–8

    PubMed  CAS  Google Scholar 

  56. Ko JW, Jang IJ, Shin JG, et al. Theophylline pharmacokinetics are not altered by lansoprazole in CYP2C19 poor metabolizers. Clin Pharmacol Ther 1999 Jun; 65(6): 606–14

    Article  PubMed  CAS  Google Scholar 

  57. Yu KS, Yim DS, Cho JY, et al. Effect of omeprazole on the pharmacokinetics of moclobemide according to the genetic polymorphism of CYP2C19. Clin Pharmacol Ther 2001 Apr; 69(4): 266–73

    Article  PubMed  CAS  Google Scholar 

  58. Cho JY, Yu KS, Jang IJ, et al. Omeprazole hydroxylation is inhibited by a single dose of moclobemide in homozygotic EM genotype for CYP2C19. Br J Clin Pharm 2002 Apr; 53(4): 393–7

    Article  CAS  Google Scholar 

  59. Laine K, Tybring G, Bertilsson L. No sex-related differences but significant inhibition by oral contraceptives of CYP2C19 activity as measured by the probe drugs mephenytoin and omeprazole in healthy Swedish white subjects. Clin Pharmacol Ther 2000 Aug; 68(2): 151–9

    Article  PubMed  CAS  Google Scholar 

  60. Pauli-Magnus C, Rekersbrink S, Klotz U, et al. Interaction of omeprazole, lansoprazole and pantoprazole with P-glycoprotein. Naunyn Schmiedebergs Arch Pharmacol 2001 Dec; 364(6): 551–7

    Article  PubMed  CAS  Google Scholar 

  61. Tassaneeyakul W, Vannaprasaht S, Yamazoe Y. Formation of omeprazole sulphone but not 5-hydroxyomeprazole is inhibited by grapefruit juice. Br J Clin Pharmacol 2000 Feb; 49(2): 139–44

    Article  PubMed  CAS  Google Scholar 

  62. Tassaneeyakul W, Guo LQ, Fukuda K, et al. Inhibition selectivity of grapefruit juice components on human cytochromes P450. Arch Biochem Biophys 2000 Jun 15; 378(2): 356–63

    Article  PubMed  CAS  Google Scholar 

  63. Leite LP, Johnston BT, Just RJ, et al. Persistent acid secretion during omeprazole therapy: a study of gastric acid profiles in patients demonstrating failure of omeprazole therapy. Am J Gastroenterol 1996 Aug; 91(8): 1527–31

    PubMed  CAS  Google Scholar 

  64. Sagar M, Tybring G, Dahl ML, et al. Effects of omeprazole on intragastric pH and plasma gastrin are dependent on the CYP2C19 polymorphism. Gastroenterology 2000 Sep; 119(3): 670–6

    Article  PubMed  CAS  Google Scholar 

  65. Furuta T, Shirai N, Xiao F, et al. Effect of high-dose lansoprazole on intragastic pH in subjects who are homozygous extensive metabolizers of cytochrome P4502C19. Clin Pharmacol Ther 2001 Nov; 70(5): 484–92

    Article  PubMed  CAS  Google Scholar 

  66. Shirai N, Furuta T, Xiao F, et al. Comparison of lansoprazole and famotidine for gastric acid inhibition during the daytime and night-time in different CYP2C19 genotype groups. Aliment Pharmacol Ther 2002 Apr; 16(4): 837–46

    Article  PubMed  CAS  Google Scholar 

  67. Adachi K, Katsube T, Kawamura A, et al. CYP2C19 genotype status and intragastric pH during dosing with lansoprazole or rabeprazole. Aliment Pharmacol Ther 2000 Oct; 14(10): 1259–66

    Article  PubMed  CAS  Google Scholar 

  68. Shirai N, Furuta T, Moriyama Y, et al. Effects of CYP2C19 genotypic differences in the metabolism of omeprazole and rabeprazole on intragastric pH. Aliment Pharmacol Ther 2001 Dec; 15(12): 1929–37

    Article  PubMed  CAS  Google Scholar 

  69. Ieiri I, Kishimoto Y, Okochi H, et al. Comparison of the kinetic disposition of and serum gastrin change by lansoprazole versus rabeprazole during an 8-day dosing scheme in relation to CYP2C19 polymorphism. Eur J Clin Pharm 2001 Sep; 57(6-7): 485–92

    Article  CAS  Google Scholar 

  70. Furuta T, Ohashi K, Kamata T, et al. Effect of genetic differences in omeprazole metabolism on cure rates for Helicobacter pylori infection and peptic ulcer. Ann Intern Med 1998 Dec 15; 129(12): 1027–30

    PubMed  CAS  Google Scholar 

  71. Furuta T, Shirai N, Takashima M, et al. Effect of genotypic differences in CYP2C19 on cure rates for Helicobacter pylori infection by triple therapy with a proton pump inhibitor, amoxicillin, and clarithromycin. Clin Pharmacol Ther 2001 Mar; 69(3): 158–68

    Article  PubMed  CAS  Google Scholar 

  72. Furuta T, Shirai N, Takashima M, et al. Effects of genotypic differences in CYP2C19 status on cure rates for Helicobacter pylori infection by dual therapy with rabeprazole plus amoxicillin. Pharmacogenetics 2001 Jun; 11(4): 341–8

    Article  PubMed  CAS  Google Scholar 

  73. Hokari K, Sugiyama T, Kato M, et al. Efficacy of triple therapy with rabeprazole for Helicobacter pylori infection and CYP2C19 genetic polymorphism. Aliment Pharmacol Ther 2001 Sep; 15(9): 1479–84

    Article  PubMed  CAS  Google Scholar 

  74. Miyoshi M, Mizuno M, Ishiki K, et al. A randomized open trial for comparison of proton pump inhibitors, omeprazole versus rabeprazole, in dual therapy for Helicobacter pylori infection in relation to CYP2C19 genetic polymorphism. J Gastroenterol Hepatol 2001 Jul; 16(7): 723–8

    Article  PubMed  CAS  Google Scholar 

  75. Dojo M, Azuma T, Saito T, et al. Effects of CYP2C19 gene polymorphism on cure rates for Helicobacter pylori infection by triple therapy with proton pump inhibitor (omeprazole or rabeprazole), amoxycillin and clarithromycin in Japan. Dig Liver Dis 2001 Nov; 33(8): 671–5

    Article  PubMed  CAS  Google Scholar 

  76. Inaba T, Mizuno M, Kawai K, et al. Randomized open trial for comparison of proton pump inhibitors in triple therapy for Helicobacter pylori infection in relation to CYP2C19 genotype. J Gastroenterol Hepatol 2002 Jul; 17(7): 748–53

    Article  PubMed  CAS  Google Scholar 

  77. Furuta T, Takashima M, Shirai N, et al. Cure of refractory duodenal ulcer and infection caused by Helicobacter pylori by high doses of omeprazole and amoxicillin in a homozygous CYP2C19 extensive metaboliser patient. Clin Pharmacol Ther 2000 Jun; 67(6): 684–9

    Article  PubMed  CAS  Google Scholar 

  78. Ferron GM, Preston RA, Noveck RJ, et al. Pharmacokinetics of pantoprazole in patients with moderate and severe hepatic dysfunction. Clin Ther 2001 Aug; 23(8): 1180–92

    Article  PubMed  CAS  Google Scholar 

  79. Sagar M, Bertilsson L, Stridsberg M, et al. Omeprazole and CYP2C19 polymorphism: effects of long-term treatment on gastrin, pepsinogen I, and chromogranin A in patients with acid related disorders. Aliment Pharmacol Ther 2000 Nov; 14(11): 1495–502

    Article  PubMed  CAS  Google Scholar 

  80. Williams ML, Bhargava P, Cherrouk I, et al. A discordance of the cytochrome P450 2C19 genotype and phenotype in patients with advanced cancer. Br J Clin Pharmacol 2000 May; 49(5): 485–8

    Article  PubMed  CAS  Google Scholar 

  81. Kirchheiner J, Brosen K, Dahl ML, et al. CYP2D6 and CYP2C19 genotype-based dose recommendations for antidepressants: a first step towards subpopulation-specific dosages. Acta Psychiatr Scand 2001 Sep; 104(3): 173–92

    Article  PubMed  CAS  Google Scholar 

  82. Mamiya K, Ieiri I, Shimamoto J, et al. The effects of genetic polymorphisms of CYP2C9 and CYP2C19 on phenytoin metabolism in Japanese adult patients with epilepsy: studies in stereoselective hydroxylation and population pharmacokinetics. Epilepsia 1998 Dec; 39(12): 1317–23

    Article  PubMed  CAS  Google Scholar 

  83. Mah JT, Wong JY, Lee EJ. Pharmacogenetics: role in modifying drug dosage regimens. Ann Acad Med Singapore 2000 Sep; 29(5): 628–32

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors did not receive funding from any source to assist in the preparation of this manuscript. The authors do not have any conflicts of interest directly relevant to the content of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Euan J. Dickson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dickson, E.J., Stuart, R.C. Genetics of Response to Proton Pump Inhibitor Therapy. Am J Pharmacogenomics 3, 303–315 (2003). https://doi.org/10.2165/00129785-200303050-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00129785-200303050-00002

Keywords

Navigation