Aquaporin water channels in gastrointestinal physiology

J Physiol. 1999 Jun 1;517 ( Pt 2)(Pt 2):317-26. doi: 10.1111/j.1469-7793.1999.0317t.x.

Abstract

Fluid transport is a major function of the gastrointestinal (GI) tract with more than 9 litres of fluid being absorbed or secreted across epithelia in human salivary gland, stomach, the hepatobiliary tract, pancreas, small intestine and colon. This review evaluates the evidence that aquaporin-type water channels are involved in GI fluid transport. The aquaporins are a family of small ( approximately 30 kDa) integral membrane proteins that function as water channels. At least seven aquaporins are expressed in various tissues in the GI tract: AQP1 in intrahepatic cholangiocytes, AQP4 in gastric parietal cells, AQP3 and AQP4 in colonic surface epithelium, AQP5 in salivary gland, AQP7 in small intestine, AQP8 in liver, pancreas and colon, and AQP9 in liver. There are functional data suggesting that some GI cell types expressing aquaporins have high or regulated water permeability; however, there has been no direct evidence for a role of aquaporins in GI physiology. Recently, transgenic mice have been generated with selective deletions of various aquaporins. Preliminary evaluation of GI function suggests a role for AQP1 in dietary fat processing and AQP4 in colonic fluid absorption. Further study of aquaporin function in the GI tract should provide new insights into normal GI physiology and disease mechanisms, and may yield novel therapies to regulate fluid movement in GI diseases.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.
  • Review

MeSH terms

  • Animals
  • Aquaporins / metabolism*
  • Bile Ducts / cytology
  • Bile Ducts / metabolism
  • Biological Transport / physiology
  • Body Fluids / metabolism
  • Cell Membrane Permeability / physiology
  • Digestive System / metabolism
  • Digestive System Physiological Phenomena*
  • Humans
  • Salivary Glands / metabolism

Substances

  • Aquaporins