Synthesis and action of nitric oxide in rat glomerular mesangial cells

Am J Physiol. 1991 Oct;261(4 Pt 2):F600-6. doi: 10.1152/ajprenal.1991.261.4.F600.

Abstract

Macrophages and certain tumor cell lines can be induced to synthesize nitric oxide (NO) from L-arginine after stimulation with lipopolysaccharide (LPS) or cytokines. In the present study, we have found that culture medium collected after 24 h from unstimulated rat mesangial cells (MC) contains 6.3 +/- 1.2 microM of NO3-/NO2- (the degradation products of NO). These levels were significantly increased when MC were incubated with LPS (10 micrograms/ml) for 24 h (23.9 +/- 4.1, P less than 0.05). The specific inhibitor of NO synthesis, NG-monomethyl-L-arginine (L-NMMA) completely inhibited LPS-stimulated production of NO3-/NO2-, confirming that the NO3-/NO2- was derived from NO within the MC. Recent studies suggest that endothelium-derived relaxing factor (EDRF) produced by vascular endothelium is also NO, and we have previously shown that both EDRF and NO stimulate increases in MC guanosine 3',5'-cyclic monophosphate (cGMP). Thus we sought to determine whether NO synthesized by the MC could affect cGMP levels within the same cells. After 24-h incubation with LPS (10 micrograms/ml), intracellular cGMP level within the MC was 706.3 +/- 197 (SE) compared with 40.5 +/- 7 fmol/micrograms protein in control MC incubated in media alone (P less than 0.01). The changes in cGMP in response to LPS were inhibited by greater than 90% by L-NMMA. Similar to LPS, incubation of MC with the cytokine gamma-interferon also increased NO3-/NO2- in the culture media and increased cGMP levels within MC. The induction of NO synthesis within MC and the concomitant stimulation of MC cGMP may be important in the modulation of the effects of endotoxemia, as well as inflammation, within the glomerulus.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Cells, Cultured
  • Cyclic GMP / metabolism
  • Escherichia coli
  • Interferons / pharmacology
  • Kidney Glomerulus / cytology
  • Kidney Glomerulus / drug effects
  • Kidney Glomerulus / metabolism*
  • Lipopolysaccharides / physiology
  • Nitrates / metabolism
  • Nitric Oxide / metabolism*
  • Nitric Oxide / pharmacology
  • Nitrites / metabolism
  • Rats

Substances

  • Lipopolysaccharides
  • Nitrates
  • Nitrites
  • Nitric Oxide
  • Interferons
  • Cyclic GMP