Ribosomal tag pyrosequencing of DNA and RNA from benthic coral reef microbiota: community spatial structure, rare members and nitrogen-cycling guilds

Environ Microbiol. 2011 May;13(5):1138-52. doi: 10.1111/j.1462-2920.2010.02392.x. Epub 2010 Dec 22.

Abstract

Ribosomal tag libraries based on DNA and RNA in coral reef sediment from Hawaii show the microbial community to be dominated by the bacterial phyla Proteobacteria, Firmicutes and Actinobacteria, the archaeal order Nitrosopumilales and the uncultivated divisions Marine Group III (Euryarchaeota) and Marine Benthic Group C (Crenarchaeota). Operational taxonomic units (OTUs) number in the high thousands, and richness varies with site, presence or absence of porewater sulfide (sediment depth), and nucleotide pool. Rank abundance curves of DNA-based libraries, but not RNA-based libraries, possess a tail of low abundance taxa, supporting the existence of an inactive 'rare' biosphere. While bacterial libraries from two oxic samples differ markedly, those from two anoxic (sulfidic) samples are similar. The four dominant bacterial OTUs are members of genera that include pathogens, but are found in marine environments, and include facultative anaerobes, i.e. dissimilatory nitrate reducers and denitrifiers. This may explain their abundance in both oxic and anoxic samples. A numerous archaeon is closely related to the lithoautotrophic ammonia oxidizer Nitrosopumilus maritimus. Known bacterial ammonia oxidizers are essentially absent, but bacterial nitrite oxidizers are abundant. Although other studies of this reef found evidence for anaerobic ammonia oxidizers, primer bias rendered that clade invisible to this study.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Archaea / classification*
  • Archaea / genetics
  • Bacteria / classification*
  • Bacteria / genetics
  • Coral Reefs*
  • DNA, Archaeal / genetics
  • DNA, Bacterial / genetics
  • DNA, Ribosomal / genetics
  • Gene Library*
  • Hawaii
  • Metagenome*
  • Nitrogen / metabolism
  • Phylogeny
  • RNA, Archaeal / genetics
  • RNA, Bacterial / genetics
  • RNA, Ribosomal, 16S / genetics
  • Sequence Analysis, DNA / methods
  • Sequence Analysis, RNA / methods

Substances

  • DNA, Archaeal
  • DNA, Bacterial
  • DNA, Ribosomal
  • RNA, Archaeal
  • RNA, Bacterial
  • RNA, Ribosomal, 16S
  • Nitrogen