Exenatide exerts a potent antiinflammatory effect

J Clin Endocrinol Metab. 2012 Jan;97(1):198-207. doi: 10.1210/jc.2011-1508. Epub 2011 Oct 19.

Abstract

Objective: Our objective was to determine whether exenatide exerts an antiinflammatory effect.

Research design and methods: Twenty-four patients were prospectively randomized to be injected sc with either exenatide 10 μg twice daily [n = 12; mean age = 56 ± 3 yr; mean body mass index = 39.8 ± 2 kg/m(2); mean glycosylated hemoglobin (HbA1c) = 8.6 ± 0.4%] or placebo twice daily (n = 12; mean age = 54 ± 4 yr; mean body mass index = 39.1 ± 1.6 kg/m(2); mean HbA1c = 8.5 ± 0.3%) for 12 wk. Fasting blood samples were obtained at 0, 3, 6, and 12 wk. Blood samples were also collected for up to 6 h after a single dose of exenatide (5 μg) or placebo.

Results: Fasting blood glucose fell from 139 ± 17 to 110 ± 9 mg/dl, HbA1c from 8.6 ± 0.4 to 7.4 ± 0.5% (P < 0.05), and free fatty acids by 21 ± 5% from baseline (P < 0.05) with exenatide. There was no weight loss. There was a significant reduction in reactive oxygen species generation and nuclear factor-κB binding by 22 ± 9 and 26 ± 7%, respectively, and the mRNA expression of TNFα, IL-1β, JNK-1, TLR-2, TLR-4, and SOCS-3 in mononuclear cells by 31 ± 12, 22 ± 10, 20 ± 11, 22 ± 9, 16 ± 7, and 31 ± 10%, respectively (P < 0.05 for all) after 12 wk of exenatide. After a single injection of exenatide, there was a reduction by 20 ± 7% in free fatty acids, 19 ± 7% in reactive oxygen species generation, 39 ± 11% in nuclear factor-κB binding, 18 ± 9% in TNFα expression, 26 ± 7% in IL-1β expression, 18 ± 7% in JNK-1 expression, 24 ± 12% in TLR-4 expression, and 23 ± 11% in SOCS-3 expression (P < 0.05 for all). The plasma concentrations of monocyte chemoattractant protein-1, matrix metalloproteinase-9, serum amyloid A, and IL-6 were suppressed after 12 wk exenatide treatment by 15 ± 7, 20 ± 11, 16 ± 7, and 22 ± 12%, respectively (P < 0.05 for all).

Conclusions: Exenatide exerts a rapid antiinflammatory effect at the cellular and molecular level. This may contribute to a potentially beneficial antiatherogenic effect. This effect was independent of weight loss.

Publication types

  • Randomized Controlled Trial
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Anti-Inflammatory Agents / administration & dosage
  • Anti-Inflammatory Agents / pharmacology*
  • Blood Glucose / drug effects
  • Blood Glucose / metabolism
  • Diabetes Mellitus, Type 2 / blood
  • Diabetes Mellitus, Type 2 / complications
  • Diabetes Mellitus, Type 2 / drug therapy*
  • Diabetes Mellitus, Type 2 / immunology
  • Drug Administration Schedule
  • Exenatide
  • Fatty Acids, Nonesterified / blood
  • Humans
  • Hypoglycemic Agents / administration & dosage
  • Hypoglycemic Agents / pharmacology
  • Insulin / blood
  • Middle Aged
  • Obesity / blood
  • Obesity / complications
  • Obesity / drug therapy*
  • Obesity / immunology
  • Peptides / administration & dosage*
  • Peptides / pharmacology*
  • Placebos
  • Reactive Oxygen Species / blood
  • Single-Blind Method
  • Time Factors
  • Treatment Outcome
  • Venoms / administration & dosage*
  • Venoms / pharmacology*

Substances

  • Anti-Inflammatory Agents
  • Blood Glucose
  • Fatty Acids, Nonesterified
  • Hypoglycemic Agents
  • Insulin
  • Peptides
  • Placebos
  • Reactive Oxygen Species
  • Venoms
  • Exenatide