A novel network integrating a miRNA-203/SNAI1 feedback loop which regulates epithelial to mesenchymal transition

PLoS One. 2012;7(4):e35440. doi: 10.1371/journal.pone.0035440. Epub 2012 Apr 13.

Abstract

Background: The majority of human cancer deaths are caused by metastasis. The metastatic dissemination is initiated by the breakdown of epithelial cell homeostasis. During this phenomenon, referred to as epithelial to mesenchymal transition (EMT), cells change their genetic and trancriptomic program leading to phenotypic and functional alterations. The challenge of understanding this dynamic process resides in unraveling regulatory networks involving master transcription factors (e.g. SNAI1/2, ZEB1/2 and TWIST1) and microRNAs. Here we investigated microRNAs regulated by SNAI1 and their potential role in the regulatory networks underlying epithelial plasticity.

Results: By a large-scale analysis on epithelial plasticity, we highlighted miR-203 and its molecular link with SNAI1 and the miR-200 family, key regulators of epithelial homeostasis. During SNAI1-induced EMT in MCF7 breast cancer cells, miR-203 and miR-200 family members were repressed in a timely correlated manner. Importantly, miR-203 repressed endogenous SNAI1, forming a double negative miR203/SNAI1 feedback loop. We integrated this novel miR203/SNAI1 with the known miR200/ZEB feedback loops to construct an a priori EMT core network. Dynamic simulations revealed stable epithelial and mesenchymal states, and underscored the crucial role of the miR203/SNAI1 feedback loop in state transitions underlying epithelial plasticity.

Conclusion: By combining computational biology and experimental approaches, we propose a novel EMT core network integrating two fundamental negative feedback loops, miR203/SNAI1 and miR200/ZEB. Altogether our analysis implies that this novel EMT core network could function as a switch controlling epithelial cell plasticity during differentiation and cancer progression.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cell Line, Tumor
  • Cell Movement / genetics
  • Cell Movement / physiology
  • Epithelial-Mesenchymal Transition / genetics
  • Epithelial-Mesenchymal Transition / physiology*
  • Gene Expression Regulation, Neoplastic
  • Homeodomain Proteins / genetics
  • Homeodomain Proteins / metabolism
  • Humans
  • MicroRNAs / genetics
  • MicroRNAs / metabolism*
  • Nuclear Proteins / genetics
  • Nuclear Proteins / metabolism
  • Repressor Proteins / genetics
  • Repressor Proteins / metabolism
  • Reverse Transcriptase Polymerase Chain Reaction
  • Snail Family Transcription Factors
  • Transcription Factors / genetics
  • Transcription Factors / metabolism*
  • Twist-Related Protein 1 / genetics
  • Twist-Related Protein 1 / metabolism
  • Zinc Finger E-box Binding Homeobox 2
  • Zinc Finger E-box-Binding Homeobox 1

Substances

  • Homeodomain Proteins
  • MicroRNAs
  • Nuclear Proteins
  • Repressor Proteins
  • SNAI1 protein, human
  • Snail Family Transcription Factors
  • TWIST1 protein, human
  • Transcription Factors
  • Twist-Related Protein 1
  • ZEB1 protein, human
  • ZEB2 protein, human
  • Zinc Finger E-box Binding Homeobox 2
  • Zinc Finger E-box-Binding Homeobox 1