Endocannabinoids--at the crossroads between the gut microbiota and host metabolism

Nat Rev Endocrinol. 2016 Mar;12(3):133-43. doi: 10.1038/nrendo.2015.211. Epub 2015 Dec 18.

Abstract

Various metabolic disorders are associated with changes in inflammatory tone. Among the latest advances in the metabolism field, the discovery that gut microorganisms have a major role in host metabolism has revealed the possibility of a plethora of associations between gut bacteria and numerous diseases. However, to date, few mechanisms have been clearly established. Accumulating evidence indicates that the endocannabinoid system and related bioactive lipids strongly contribute to several physiological processes and are a characteristic of obesity, type 2 diabetes mellitus and inflammation. In this Review, we briefly define the gut microbiota as well as the endocannabinoid system and associated bioactive lipids. We discuss existing literature regarding interactions between gut microorganisms and the endocannabinoid system, focusing specifically on the triad of adipose tissue, gut bacteria and the endocannabinoid system in the context of obesity and the development of fat mass. We highlight gut-barrier function by discussing the role of specific factors considered to be putative 'gate keepers' or 'gate openers', and their role in the gut microbiota-endocannabinoid system axis. Finally, we briefly discuss data related to the different pharmacological strategies currently used to target the endocannabinoid system, in the context of cardiometabolic disorders and intestinal inflammation.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Endocannabinoids / metabolism*
  • Endocannabinoids / physiology*
  • Gastrointestinal Microbiome / drug effects
  • Gastrointestinal Microbiome / physiology*
  • Gastrointestinal Tract / drug effects
  • Gastrointestinal Tract / metabolism*
  • Gastrointestinal Tract / microbiology*
  • Humans
  • Receptors, Cannabinoid / drug effects

Substances

  • Endocannabinoids
  • Receptors, Cannabinoid