Effect of luminal sodium concentration on bicarbonate absorption in rat jejunum

J Clin Invest. 1973 Dec;52(12):3172-9. doi: 10.1172/JCI107517.

Abstract

An exchange of Na(+) for H(+) has been proposed to explain why jejunal Na(+) absorption is influenced by luminal concentrations of H(+) and HCO(3) (-). We studied the influence of luminal Na(+) concentration on net HCO(3) (-) absorption by perfusing rat jejunum in vivo. When Na(+) was omitted from the perfusion fluid, HCO(3) (-) absorption diminished by a fixed amount over a range of initial HCO(3) (-) concentrations of 15 to 80 mM. This change was not caused by alterations in transmural PD or direction of water movement. Because the rate of HCO(3) (-) absorption decreased as the luminal HCO(3) (-) concentration lessened, Na(+)-dependent HCO(3) (-) absorption accounted for an increasing percent of total absorption as the luminal concentration of HCO(3) (-) diminished. The effect of Na(+) on HCO(3) (-) absorption is mediated, at least in part, by H(+) secretion, because luminal CO(2) production (manifested by luminal P(CO2)) dimished as HCO(3) (-) absorption decreased. The changes in P(CO2) are caused by reaction of H(+) with HCO(3) (-) in the luminal fluid because luminal P(CO2) is augmented by the presence of HCO(3) (-) and is diminished by addition of phosphate or Tris buffer. Whether all H(+) secretion requires luminal Na(+) cannot be determined with these experimental techniques because mucosal permeability to Na(+) and the unstirred layer make it impossible to eliminate Na(+) ions from the luminal cell surface. The nature of the mechanism for HCO(3) (-) transport that is not sodium dependent remains to be determined.

MeSH terms

  • Bicarbonates / metabolism*
  • Biological Transport
  • Hydrogen-Ion Concentration
  • Intestinal Absorption*
  • Jejunum / metabolism*
  • Sodium / metabolism*
  • Water-Electrolyte Balance

Substances

  • Bicarbonates
  • Sodium