Skip to main content

Advertisement

Log in

Chemoprevention in Barrett’s Esophagus

  • REVIEW
  • Published:
Journal of Gastrointestinal Cancer Aims and scope Submit manuscript

Abstract

Barrett’s metaplasia-associated esophageal adenocarcinoma is one of the most rapidly increasing cancers in Western countries. Whereas early detection remains the cornerstone of prevention, chemoprevention is emerging as a complementary strategy. Carcinogenesis in Barrett’s mucosa is a multistep process in which cellular growth becomes progressively dysregulated. Fortunately, the process of carcinogenesis is a protracted one, which provides ample opportunity for intervention. In this review, we will discuss various potential chemoprevention targets and rationale behind their use to prevent Barrett’s related esophageal adenocarcinoma. We will also critically appraise the emerging preclinical and clinical literature regarding prevention of neoplasia in Barrett’s esophagus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Spechler SJ. Adenocarcinoma in Barrett’s esophagus. Compr Ther. 1987;13:57–60.

    PubMed  CAS  Google Scholar 

  2. Cameron AJ. Barrett’s esophagus: does the incidence of adenocarcinoma matter? Am J Gastroenterol. 1997;92:193–4.

    PubMed  CAS  Google Scholar 

  3. Wang KK. Current strategies in the management of Barrett’s esophagus. Curr Gastroenterol Rep. 2005;7:196–201.

    Article  PubMed  CAS  Google Scholar 

  4. Thomas P, Doddoli C, Lienne P, Morati N, Thirion X, Garbe L, Giudicelli R, Fuentes P. Changing patterns and surgical results in adenocarcinoma of the oesophagus. Br J Surg. 1997;84:119–25.

    Article  PubMed  CAS  Google Scholar 

  5. Lagergren J, Bergstrom R, Lindgren A, Nyren O. Symptomatic gastroesophageal reflux as a risk factor for esophageal adenocarcinoma. N Engl J Med. 1999;340:825–31

    Article  PubMed  CAS  Google Scholar 

  6. Champion G, Richter JE, Vaezi MF, Singh S, Alexander R. Duodenogastroesophageal reflux: relationship to pH and importance in Barrett’s esophagus. Gastroenterology. 1994;107:747–54.

    PubMed  CAS  Google Scholar 

  7. Stein HJ, Kauer WK, Feussner H, Siewert JR. Bile reflux in benign and malignant Barrett’s esophagus: effect of medical acid suppression and nissen fundoplication. J Gastrointest Surg. 1998;2:333–41.

    Article  PubMed  CAS  Google Scholar 

  8. Chow WH, Blot WJ, Vaughan TL, Risch HA, Gammon MD, Stanford JL, Dubrow R, Schoenberg JB, Mayne ST, Farrow DC, et al. Body mass index and risk of adenocarcinomas of the esophagus and gastric cardia. J Natl Cancer Inst 1998;90:150–5.

    Article  PubMed  CAS  Google Scholar 

  9. Lagergren J, Bergstrom R, Nyren O. Association between body mass and adenocarcinoma of the esophagus and gastric cardia. Ann Intern Med. 1999;130:883–90.

    PubMed  CAS  Google Scholar 

  10. Engel LS, Chow WH, Vaughan TL, Gammon MD, Risch HA, Stanford JL, Schoenberg JB, Mayne ST, Dubrow R, Rotterdam H, et al. Population attributable risks of esophageal and gastric cancers. J Natl Cancer Inst. 2003;95:1404–13.

    PubMed  Google Scholar 

  11. Calle EE, Kaaks R. Overweight, obesity and cancer: epidemiological evidence and proposed mechanisms. Nat Rev Cancer 2004;4:579–91. (summarizes the role of diet and obesity in the development of esophageal adenocarcinoma in Barrett’s mucosa).

    Article  PubMed  CAS  Google Scholar 

  12. Mark SD, Qiao YL, Dawsey SM, Wu YP, Katki H, Gunter EW, Fraumeni JF Jr, Blot WJ, Dong ZW, Taylor PR. Prospective study of serum selenium levels and incident esophageal and gastric cancers. J Natl Cancer Inst. 2000;92:1753–63.

    Article  PubMed  CAS  Google Scholar 

  13. Gammon MD, Schoenberg JB, Ahsan H, Risch HA, Vaughan TL, Chow WH, Rotterdam H, West AB, Dubrow R, Stanford JL, et al. Tobacco, alcohol, and socioeconomic status and adenocarcinomas of the esophagus and gastric cardia. J Natl Cancer Inst. 1997;89:1277–84.

    Article  PubMed  CAS  Google Scholar 

  14. Iijima K, Henry E, Moriya A, Wirz A, Kelman AW, McColl KE. Dietary nitrate generates potentially mutagenic concentrations of nitric oxide at the gastroesophageal junction. Gastroenterology. 2002;122:1248–57.

    Article  PubMed  CAS  Google Scholar 

  15. Buttar NS, Wang KK. Mechanisms of diseases: carcinogenesis in Barrett’s esophagus. Nat Clin Pract Gastroenterol Hepatol. 2004;1:106–12. (summarizes the mechanisms of carcinogenesis in Barrett’s mucosa).

    Article  PubMed  Google Scholar 

  16. Sarosi GA Jr, Jaiswal K, Herndon E, Lopez-Guzman C, Spechler SJ, Souza RF. Acid increases MAPK-mediated proliferation in Barrett’s esophageal adenocarcinoma cells via intracellular acidification through a Cl-/HCO3-exchanger. Am J Physiol Gastrointest Liver Physiol. 2005;289:G991–7. (novel information on the mechanisms underlying acid induced procarcinogenic signaling).

    Article  PubMed  CAS  Google Scholar 

  17. Souza RF, Shewmake K, Terada LS, Spechler SJ. Acid exposure activates the mitogen-activated protein kinase pathways in Barrett’s esophagus. Gastroenterology. 2002;122:299–307.

    Article  PubMed  CAS  Google Scholar 

  18. Kaur BS, Ouatu-Lascar R, Omary MB, Triadafilopoulos G. Bile salts induce or blunt cell proliferation in Barrett’s esophagus in an acid-dependent fashion. Am J Physiol Gastrointest Liver Physiol. 2000;278:G1000–9.

    PubMed  CAS  Google Scholar 

  19. Zhang F, Altorki NK, Wu YC, Soslow RA, Subbaramaiah K, Dannenberg AJ. Duodenal reflux induces cyclooxygenase-2 in the esophageal mucosa of rats: evidence for involvement of bile acids. Gastroenterology. 2001;121:1391–9.

    Article  PubMed  CAS  Google Scholar 

  20. Chen X, Ding YW, Yang G, Bondoc F, Lee MJ, Yang CS. Oxidative damage in an esophageal adenocarcinoma model with rats. Carcinogenesis. 2000;21:257–63.

    Article  PubMed  CAS  Google Scholar 

  21. Wilson KT, Fu S, Ramanujam KS, Meltzer SJ. Increased expression of inducible nitric oxide synthase and cyclooxygenase-2 in Barrett’s esophagus and associated adenocarcinomas. Cancer Res 1998;58:2929–34.

    PubMed  CAS  Google Scholar 

  22. Sihvo EI, Salminen JT, Rantanen TK, Ramo OJ, Ahotupa M, Farkkila M, Auvinen MI, Salo JA. Oxidative stress has a role in malignant transformation in Barrett’s oesophagus. Int J Cancer. 2002;102:551–5.

    Article  PubMed  CAS  Google Scholar 

  23. Buttar NS, Anderson MA, Krishnadath KK, Lutzke LS, Nijhawan PK, Wang KK. Chemopreventive potential of selective cyclooxygenase-2 (COX-2) inhibition in Barrett’s epithelium: an in-vitro study. Gastroenterology. 2000;118:P23.

    Google Scholar 

  24. Buttar NS. Effect of green tea polyphenol on signaling pathways asociated with esophageal adenocarcinoma in an animal model. Gastroenterology. 2004;126:A–47.

    Google Scholar 

  25. Wild CP, Hardie LJ. Reflux, Barrett’s oesophagus and adenocarcinoma: burning questions. Nat Rev Cancer. 2003;3:676–84.

    Article  PubMed  CAS  Google Scholar 

  26. Iravani S, Zhang HQ, Yuan ZQ, Cheng JQ, Karl RC, Jove R, Coppola D. Modification of insulin-like growth factor 1 receptor, c-Src, and Bcl-XL protein expression during the progression of Barrett’s neoplasia. Hum Pathol. 2003;34:975–82.

    Article  PubMed  CAS  Google Scholar 

  27. Coppola D, Ferber A, Miura M, Sell C, D'Ambrosio C, Rubin R, Baserga R. A functional insulin-like growth factor I receptor is required for the mitogenic and transforming activities of the epidermal growth factor receptor. Mol Cell Biol. 1994;14:4588–95.

    PubMed  CAS  Google Scholar 

  28. Iwao T, Toyonaga A, Kuboyama S, Tanikawa K. Effects of omeprazole and lansoprazole on fasting and postprandial serum gastrin and serum pepsinogen A and C. Hepato-Gastroenterology. 1995;42:677–82.

    PubMed  CAS  Google Scholar 

  29. Haigh CR, Attwood SE, Thompson DG, Jankowski JA, Kirton CM, Pritchard DM, Varro A, Dimaline R. Gastrin induces proliferation in Barrett’s metaplasia through activation of the CCK2 receptor. Gastroenterology. 2003;124:615–25.

    Article  PubMed  CAS  Google Scholar 

  30. Abdalla SI, Lao-Sirieix P, Novelli MR, Lovat LB, Sanderson IR, Fitzgerald RC. Gastrin-induced cyclooxygenase-2 expression in Barrett’s carcinogenesis. Clin Cancer Res. 2004;10:4784–92.

    Article  PubMed  CAS  Google Scholar 

  31. Liu RH, Hotchkiss JH. Potential genotoxicity of chronically elevated nitric oxide: a review. Mutat Res. 1995;339:73–89.

    PubMed  CAS  Google Scholar 

  32. Hughes SJ, Morse MA, Weghorst CM, Kim H, Watkins PB, Guengerich FP, Orringer MB, Beer DG. Cytochromes P450 are expressed in proliferating cells in Barrett’s metaplasia. Neoplasia. 1999;1:145–53.

    Article  PubMed  CAS  Google Scholar 

  33. Jankowski J, Hopwood D, Pringle R, Wormsley KG. Increased expression of epidermal growth factor receptors in Barrett’s esophagus associated with alkaline reflux: a putative model for carcinogenesis. Am J Gastroenterol. 1993;88:402–8.

    PubMed  CAS  Google Scholar 

  34. Brito MJ, Filipe MI, Linehan J, Jankowski J. Association of transforming growth factor alpha (TGFA) and its precursors with malignant change in Barrett’s epithelium: biological and clinical variables. Int J Cancer. 1995;60:27–32.

    Article  PubMed  CAS  Google Scholar 

  35. Barrett MT, Sanchez CA, Galipeau PC, Neshat K, Emond M, Reid BJ. Allelic loss of 9p21 and mutation of the CDKN2/p16 gene develop as early lesions during neoplastic progression in Barrett’s esophagus. Oncogene. 1996;13:1867–73.

    PubMed  CAS  Google Scholar 

  36. Umansky M, Yasui W, Hallak A, Brill S, Shapira I, Halpern Z, Hibshoosh H, Rattan J, Meltzer S, Tahara E, et al. Proton pump inhibitors reduce cell cycle abnormalities in Barrett’s esophagus. Oncogene. 2001;20:7987–91.

    Article  PubMed  CAS  Google Scholar 

  37. Garrigue-Antar L, Souza RF, Vellucci VF, Meltzer SJ, Reiss M. Loss of transforming growth factor-beta type II receptor gene expression in primary human esophageal cancer. Lab Invest. 1996;75:263–72.

    PubMed  CAS  Google Scholar 

  38. Krishnadath KK, Reid BJ, Wang KK. Biomarkers in Barrett esophagus. Mayo Clin Proc. 2001;76:438–46.

    Article  PubMed  CAS  Google Scholar 

  39. Younes M, Lechago J, Ertan A, Finnie D, Younes A. Decreased expression of Fas (CD95/APO1) associated with goblet cell metaplasia in Barrett’s esophagus. Human Pathol. 2000;31:434–8.

    Article  CAS  Google Scholar 

  40. Lord RV, Tsai PI, Danenberg KD, Peters JH, Demeester TR, Tsao-Wei DD, Groshen S, Salonga D, Park JM, Crookes PF, et al. Retinoic acid receptor-alpha messenger RNA expression is increased and retinoic acid receptor-gamma expression is decreased in Barrett’s intestinal metaplasia, dysplasia, adenocarcinoma sequence. Surgery. 2001;129:267–76.

    Article  PubMed  CAS  Google Scholar 

  41. Zhang W, Rashid A, Wu H, Xu XC. Differential expression of retinoic acid receptors and p53 protein in normal, premalignant, and malignant esophageal tissues. J Cancer Res Clin Oncol. 2001;127:237–42.

    Article  PubMed  CAS  Google Scholar 

  42. Hormi-Carver K, Feagins LA, Spechler SJ, Souza RF. All trans-retinoic acid induces apoptosis via p38 and caspase pathways in metaplastic Barrett’s cells. Am J Physiol- Gastrointest Liver Physiol. 2007;292:G18–27. (Defines a novel cancer prevention target).

    Article  PubMed  CAS  Google Scholar 

  43. Morales CP, Lee EL, Shay JW. In situ hybridization for the detection of telomerase RNA in the progression from Barrett’s esophagus to esophageal adenocarcinoma. Cancer. 1998;83:652–9.

    Article  PubMed  CAS  Google Scholar 

  44. Sampliner RE. Practice guidelines on the diagnosis, surveillance, and therapy of Barrett’s esophagus. The practice parameters committee of the American college of gastroenterology. Am J Gastroenterol. 1998;93:1028–32.

    Article  PubMed  CAS  Google Scholar 

  45. Wang KK, Wongkeesong M, Buttar NS. American gastroenterological association medical position statement: Role of the gastroenterologist in the management of esophageal carcinoma. Gastroenterology. 2005;128:1468–70. (current management recommendations by the American Gastroenterological Association).

    Article  PubMed  Google Scholar 

  46. Spechler SJ. Screening and surveillance for complications related to gastroesophageal reflux disease. Am J Med. 2001;111:130S–6S.

    Article  PubMed  Google Scholar 

  47. Reid BJ, Haggitt RC, Rubin CE, Roth G, Surawicz CM, Van Belle G, Lewin K, Weinstein WM, Antonioli DA, Goldman H. Observer variation in the diagnosis of dysplasia in Barrett’s esophagus. Human Pathol. 1988;19:166–78.

    Article  CAS  Google Scholar 

  48. Reid BJ, Blount PL, Rabinovitch PS. Biomarkers in Barrett’s esophagus. Gastrointest Endosc Clin N Am. 2003;13:369–97.

    Article  PubMed  Google Scholar 

  49. Fitzgerald RC. Genetics and prevention of oesophageal adenocarcinoma. Recent Results Cancer Res. 2005;166:35–46. (summarizes the genetics of esophageal adenocarcinoma in Barrett’s mucosa).

    PubMed  CAS  Google Scholar 

  50. Lao-Sirieix P, Roy A, Worrall C, Vowler SL, Gardiner S, Fitzgerald RC. Effect of acid suppression on molecular predictors for esophageal cancer. Cancer Epidemiol Biomark Prev. 2006;15:288–93.

    Article  CAS  Google Scholar 

  51. Konturek PC, Nikiforuk A, Kania J, Raithel M, Hahn EG, Muhldorfer S. Activation of NFkappaB represents the central event in the neoplastic progression associated with Barrett’s esophagus: a possible link to the inflammation and overexpression of COX-2, PPARgamma and growth factors. Dig Dis Sci. 2004;49:1075–83.

    Article  PubMed  CAS  Google Scholar 

  52. Madhavan M, Demars C, Papenfuss S, Prasad G, Lutzke L, Anderson M, Song LWK, Wang K, Buttar N. Pge2 regulation by cytosolic pla2 alpha, a potential non-COX-2 chemopreventive target, during carcinogenesis in Barrett’s mucosa. Gastroenterology. 2006;130:A77.

    Google Scholar 

  53. Hong MK, Laskin WB, Herman BE, Johnston MH, Vargo JJ, Steinberg SM, Allegra CJ, Johnston PG. Expansion of the Ki-67 proliferative compartment correlates with degree of dysplasia in Barrett’s esophagus. Cancer. 1995;75:423–29.

    Article  PubMed  CAS  Google Scholar 

  54. Lauwers GY, Kandemir O, Kubilis PS, Scott GV. Cellular kinetics in Barrett’s epithelium carcinogenic sequence: roles of apoptosis, bcl-2 protein, and cellular proliferation. Mod Path. 1997;10:1201–8.

    CAS  Google Scholar 

  55. Sharma P, McQuaid K, Dent J, Fennerty MB, Sampliner R, Spechler S, Cameron A, Corley D, Falk G, Goldblum J, et al. A critical review of the diagnosis and management of Barrett’s esophagus: the AGA Chicago Workshop. Gastroenterology. 2004;127:310–30. (expert opinion in the management of Barrett’s esophagus).

    Article  PubMed  Google Scholar 

  56. Schell TG. Acid suppression and adenocarcinoma of the esophagus: cause or cure? Am J Gastroenterol. 2004;99:1884–6.

    Article  PubMed  Google Scholar 

  57. El-Serag HB, Aguirre TV, Davis S, Kuebeler M, Bhattacharyya A, Sampliner RE. Proton pump inhibitors are associated with reduced incidence of dysplasia in Barrett’s esophagus. Am J Gastroenterol. 2004;99:1877–83. (explores the effect of acid suppression on the development of dysplasia in Barrett’s mucosa).

    Article  PubMed  CAS  Google Scholar 

  58. Hillman LC, Chiragakis L, Shadbolt B, Kaye GL, Clarke AC. Proton-pump inhibitor therapy and the development of dysplasia in patients with Barrett’s oesophagus. Med J Aust. 2004;180:387–91. (Explores the effect of acid suppression on the development of dysplasiaand cancer in Barrett’s mucosa).

    PubMed  Google Scholar 

  59. Ouatu-Lascar R, Fitzgerald RC, Triadafilopoulos G. Differentiation and proliferation in Barrett’s esophagus and the effects of acid suppression. Gastroenterology. 1999;117:327–35.

    Article  PubMed  CAS  Google Scholar 

  60. Farrow DC, Vaughan TL, Hansten PD, Stanford JL, Risch HA, Gammon MD, Chow WH, Dubrow R, Ahsan H, Mayne ST, et al. Use of aspirin and other nonsteroidal anti-inflammatory drugs and risk of esophageal and gastric cancer. Cancer Epidemiol Biomark Prev. 1998;7:97–102.

    CAS  Google Scholar 

  61. Corley DA, Kerlikowske K, Verma R, Buffler P. Protective association of aspirin/NSAIDs and esophageal cancer: a systematic review and meta-analysis. Gastroenterology. 2003;124:47–56.

    Article  CAS  Google Scholar 

  62. Li M, Lotan R, Levin B, Tahara E, Lippman SM, Xu XC. Aspirin induction of apoptosis in esophageal cancer: a potential for chemoprevention. Cancer Epidemiol Biomark Prev. 2000;9:545–9.

    CAS  Google Scholar 

  63. Vaughan TL, Dong LM, Blount PL, Ayub K, Odze RD, Sanchez CA, Rabinovitch PS, Reid BJ. Non-steroidal anti-inflammatory drugs and risk of neoplastic progression in Barrett’s oesophagus: a prospective study. Lancet Oncol. 2005;6:945–52. (explores the effect of NSAIDs on the development of cancer in Barrett’s mucosa).

    Article  PubMed  CAS  Google Scholar 

  64. Buttar NS, Wang KK, Leontovich O, Westcott JY, Pacifico RJ, Anderson MA, Krishnadath KK, Lutzke LS, Burgart LJ. Chemoprevention of esophageal adenocarcinoma by COX-2 inhibitors in an animal model of Barrett’s esophagus. Gastroenterology. 2002;122:1101–12.

    Article  PubMed  CAS  Google Scholar 

  65. Kaur BS, Khamnehei N, Iravani M, Namburu SS, Lin O, Triadafilopoulos G. Rofecoxib inhibits cyclooxygenase 2 expression and activity and reduces cell proliferation in Barrett’s esophagus. Gastroenterology. 2002;123:60–7.

    Article  PubMed  CAS  Google Scholar 

  66. Chen X, Li N, Wang S, Hong J, Fang M, Yousselfson J, Yang P, Newman RA, Lubet RA, Yang CS. Aberrant arachidonic acid metabolism in esophageal adenocarcinogenesis, and the effects of sulindac, nordihydroguaiaretic acid, and alpha-difluoromethylornithine on tumorigenesis in a rat surgical model. Carcinogenesis. 2002;23:2095–102.

    Article  PubMed  CAS  Google Scholar 

  67. Marshall RE, Anggiansah A, Owen WJ. Bile in the oesophagus: clinical relevance and ambulatory detection. Br J Surg. 1997;84:21–8.

    Article  PubMed  CAS  Google Scholar 

  68. Vaezi MF, Richter JE. Synergism of acid and duodenogastroesophageal reflux in complicated Barrett’s esophagus. Surgery. 1995;117:699–704.

    Article  PubMed  CAS  Google Scholar 

  69. Nehra D, Howell P, Williams CP, Pye JK, Beynon J. Toxic bile acids in gastro-oesophageal reflux disease: influence of gastric acidity. Gut. 1999;44:598–602.

    Article  PubMed  CAS  Google Scholar 

  70. Lindor KD, Jorgensen RA, Anderson ML, Gores GJ, Hofmann AF, LaRusso NF. Ursodeoxycholic acid and methotrexate for primary sclerosing cholangitis: a pilot study. Am J Gastroenterol. 1996;91:511–5.

    PubMed  CAS  Google Scholar 

  71. Hattori Y, Murakami Y, Hattori S, Kuroda H, Kasai K, Shimoda S. Ursodeoxycholic acid inhibits the induction of nitric oxide synthase. Eur J Pharmacol. 1996;300:147–50.

    Article  PubMed  CAS  Google Scholar 

  72. Sahbaie P, Siersema P, Sood S, Kaur B, Hofmann AF, Triadafilopoulos G. Ursodeoxycholic acid (UDCA) increases proliferation and does not show promise as a chemoprevention agent in Barrett’s esophagus. Gastroenterology. 2004;126:A181.

    Google Scholar 

  73. Lin JK, Liang YC, Lin-Shiau SY. Cancer chemoprevention by tea polyphenols through mitotic signal transduction blockade. Biochem Pharmacol. 1999;58:911–5.

    Article  PubMed  CAS  Google Scholar 

  74. DeMars C BN, Wang K, Mittal V, Lutzke L. Chemopreventive effects of green tea polyphenol on Barrett’s esophagus associated subepithelial stromal cells. Cancer Res. 2003;AACR 2003 Frontiers in Cancer Prevention Research (Abstract).

  75. Mittal V, Buttar NS, DeMars C, Wang KK, Wong LM, Song K, Papenfuss SM, Anderson M, Lutzke L, Ross A. Effect of green tea polyphenol on signaling pathways associated with esophageal adenocarcinoma in an animal model. Gastroenterology. 2004;126:A47.

    Article  Google Scholar 

  76. Bollschweiler E, Wolfgarten E, Nowroth T, Rosendahl U, Monig SP, Holscher AH. Vitamin intake and risk of subtypes of esophageal cancer in Germany. J Cancer Res Clin Oncol 2002;128:575–80.

    Article  PubMed  CAS  Google Scholar 

  77. Chen X, Mikhail SS, Ding YW, Yang G, Bondoc F, Yang CS. Effects of vitamin E and selenium supplementation on esophageal adenocarcinogenesis in a surgical model with rats. Carcinogenesis 2000;21:1531–6.

    Article  PubMed  CAS  Google Scholar 

  78. Triadafilopoulos G, Kaur B, Sood S, Traxler B, Levine D, Weston A. The effects of esomeprazole combined with aspirin or rofecoxib on prostaglandin E2 production in patients with Barrett’s oesophagus. Aliment Pharmacol Ther. 2006;23:997–1005. (explores the effect of acid suppression and Aspirin on the pro-neoplastic signaling in Barrett’s mucosa).

    Article  PubMed  CAS  Google Scholar 

  79. Heath EI, Canto MI, Piantadosi S, Montgomery E, Weinstein WM, Herman JG, Dannenberg AJ, Yang VW, Shar AO, Hawk E, et al. Secondary chemoprevention of Barrett’s esophagus with celecoxib: results of a randomized trial. J Natl Cancer Inst. 2007;99:545–57.

    Article  PubMed  CAS  Google Scholar 

  80. Topol EJ. Failing the public health–rofecoxib, Merck, and the FDA. N Engl J Med. 2004;351:1707–9.

    Article  PubMed  CAS  Google Scholar 

  81. Jankowski J, Sharma P. Review article: approaches to Barrett’s oesophagus treatment—the role of proton pump inhibitors and other interventions. Aliment Pharmacol Ther. 2004;19 (Suppl 1):54–9.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the support of the Fittermann Foundation, Mayo Foundation, NIH grant CA110022-01 and DK076845-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Navtej S. Buttar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ilyas, S., DeMars, C.J. & Buttar, N.S. Chemoprevention in Barrett’s Esophagus. J Gastrointest Canc 38, 1–9 (2007). https://doi.org/10.1007/s12029-007-9006-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12029-007-9006-7

Keywords

Navigation