Clostridium difficile toxin-induced intestinal secretion in rabbit ileum *in vitro*

S HUGHES, G WARHURST, L A TURNBERG,* N B HIGGS, L G GIUGLIANO, AND B S DRASAR

From the Department of Medicine, Hope Hospital, Salford, and Department of Microbiology, London School of Hygiene and Tropical Medicine, London

SUMMARY In rabbit ileum *in vitro* Clostridium difficile toxin (200 µl crude extract) almost abolished net Na absorption, by decreasing mucosa to serosa flux, and induced net Cl secretion by increasing the serosa to mucosa flux. These flux changes were induced when there was no visible histological damage to the mucosa. The toxin did not influence adenylate or guanylate cyclase activity in a plasma membrane fraction of isolated rabbit enterocytes nor did it affect cAMP concentrations in intact rabbit ileum pre-incubated with toxin. The flux responses to the toxin were prevented by removing calcium from the serosal medium, suggesting that the secretory process may be calcium dependent. These results indicate a possible mechanism by which this toxin could induce diarrhoea.

Clostridium difficile toxin has been implicated as an important cause of antibiotic-associated colitis.1 2 Although the toxin damages the colonic epithelium3 and has cytotoxic effects in tissue culture,4 watery diarrhoea is a common feature of the disease in many cases when mucosal damage is inapparent.5 We have, therefore, investigated the effect of a crude toxin on intestinal transport in isolated rabbit ileum to elucidate whether it can act as an intestinal secretagogue.

Methods

TOXIN PREPARATION

Toxigenic *Cl difficile* was grown in Oxoid cooked meat medium at 37°C for five days. The cultures were centrifuged and the supernatant filtered through a 0-22 µm membrane filter (Millipore Corporation, Bedford, Mass.) and stored at −70°C until used. The cytotoxicity of this material was confirmed using tissue culture methods.6 Other workers have recently separated *Cl difficile* toxin into fractions containing an enterotoxin and a cytotoxin.7 Thus it is likely that our crude extract contained more than one toxin. Control medium was prepared as above using non-toxigenic *Cl difficile*.

ION TRANSPORT STUDIES

These were performed as previously described.8 Briefly, male New Zealand white rabbits (2-4 kg weight) were killed by air embolus and the distal ileum rapidly removed and bathed in oxygenated Ringer's bicarbonate buffer solution. Sections of the tissue were stripped of muscle layers and mounted in a modified Ussing chamber.9 The tissue was bathed on each side by 10 ml of isotonic buffer solution of composition Na 146, K 4-2, Cl 125-8, HCO3 26-6, Ca 1-2, H2PO4 0-2, HPO4 1-2, Mg 1-2, glucose 10 mmol/l, and pH 7-4. When investigating the effect of calcium on secretion a calcium-free buffer solution with a calcium-chelating agent was placed on the serosal side (Na 146, K 4-2, Cl 125-8, HCO3 26-6, H2PO4 0-2, HPO4 1-2, Mg 1-2, ethylene glycol-bis-(β-amino ethyl ether)N, N'-tetraacetic acid (EGTA) 0-2, glucose 10 mmol/l, and pH 7-4). The buffer solution was stirred and oxygenated via a bubble lift mechanism by a 95% O2/5% CO2 mixture and maintained at 37°C.

The transmucosal potential difference (PD) was measured as previously described8 and the short-circuit current (Isc) by means of a voltage clamp. Tissue resistance was calculated from PD and Isc. Sodium and chloride fluxes were measured using 0-5

* Address for correspondence: Professor L A Turnberg, Department of Medicine, Hope Hospital, (University of Manchester, School of Medicine), Eccles Old Road, Salford M6 8HD.

Received for publication 17 May 1982
Cyclic nucleotide studies

1 cAMP

Pieces of stripped rabbit ileal mucosa were placed in flasks containing 10 ml of buffer solution (as above) oxygenated with 95% O₂ 5% CO₂, and incubated at 37°C. After a 45-minute pre-incubation period Cl difficile toxin (200 μl) was added. Control flasks contained 200 μl of culture medium. At 45 and 90 minutes after addition the mucosal pieces were removed and placed immediately in absolute ethanol at -40°C containing 4 nCi (³²) cAMP as a recovery marker. Tissues were homogenised with a motor driven Teflon pestle and centrifuged at 2500 g for 20 minutes. The resulting supernatants were dried under N₂ at 40°C and suspended in a buffer containing Tris-HCl 50 mmol/l and ethylene diamine tetraacetic acid (EDTA) 4 mmol/l pH 7.4. Aliquots were assayed for cAMP using a commercial kit (Radiochemical Centre, Amersham). The precipitate recovered after centrifugation was dissolved in 1 N NaOH and assayed for protein. Results were expressed as picomoles of cAMP per milligram of protein.

2 Effect of Clostridium toxin on nucleotide cyclases

A semi-purified plasma membrane fraction was prepared from isolated rabbit small intestinal epithelial cells according to the method of Murer et al. The final membrane pellet was resuspended in Ringer's bicarbonate buffer and stored at -70°C until use.

Adenylate cyclase assays were performed according to the method of Amiranoff et al. The reaction mixture contained 0-8 mmol/l adenosine triphosphate (ATP); 10 mmol/l MgCl₂; 1 mmol/l EDTA; 0.2 mmol/l 3-isobutyl-1-methyl-xanthine (IBMX); 20 mmol/l creatine phosphate; 25 mmol/l Tris; 4 mg/ml bovine serum albumin; 1 mg/ml phosphocreatine kinase and 50-100 μg membrane protein in a final volume of 250 μl. Incubations were performed at 30°C for periods of up to one hour and the reaction stopped by heating to 100°C for three minutes. cAMP was determined with the assay kit. Guanylate cyclase was determined in a similar way except that the reaction mixture contained 1 mmol/l guanosine triphosphate (GTP); 10 mmol/l caffeine; 5-35 mmol/l MnCl₂ creatine phosphate; 1 mg/ml creatine phosphokinase; 40 mmol/l Tris-HCl, pH 7-4; and 10-15 μg membrane protein. The cGMP produced was assayed by a specific radioimmunoassay (Radiochemical Centre, Amersham).

Both assays were started by the addition of membrane protein. Toxin and control medium were added to the incubations immediately before the addition of the membranes in a volume of 5 μl. Results are expressed as picomoles of cyclic nucleotides formed per milligram of protein.

All results are expressed as the mean ± 1 SEM. Statistical comparisons were performed using Student's t-test for paired variables and considered significant if p<0.05. An analysis of variance was also performed for some of the data comparisons.

Results

The addition of 200 μl of toxin-containing medium caused a slow but significant rise in potential difference (10-9% at 60 minutes and 22-9% at 100 minutes, p<0.02) and short circuit current (21-2% at 60 minutes and 36-5% at 100 minutes, p<0.01) and a fall in tissue resistance (R) (7-8% at 60 minutes and 9.5% at 100 minutes, p<0.02, n=15). The control medium, however, caused similar but smaller changes in short circuit current and tissue resistance and an analysis of variance showed that there was no significant difference between the responses to control and toxin-containing medium.

The control medium had no significant effect on unidirectional fluxes over a period of 100 minutes but the toxin-containing medium almost abolished net sodium absorption, mainly by decreasing the mucosa to serosa flux, and induced net chloride secretion mainly by increasing the serosa to mucosa flux. Significant changes were able to be seen at 40 to 60 minutes after exposure but were maximal at 80 to 100 minutes. The residual ion flux (J^R_net) was unaffected (Table 1). Analysis of variance
confirmed that all the significant flux responses to the toxin were significantly different from the toxin-free medium responses.

With a calcium-free buffer solution on the serosal side the inhibition of net sodium absorption and the net chloride secretion induced by the toxin was markedly reduced (Table 2). The addition of theophylline 10^{-4}M to the calcium-free serosal reservoir after 100 minutes' incubation with toxin induced a sharp rise in short circuit current (22.3% in two minutes, p<0.01) confirming viability of the ileal tissue (n=3).

Cyclical Nucleotide Studies

Clostridium diffficile toxin incubated for periods of up to 90 minutes with segments of stripped rabbit ileum had no effect on mucosal cAMP concentrations when compared with control tissues (Table 3) at a time when flux changes due to the toxin were observable. The ability of tissues incubated in this way to respond to cAMP stimulating agents was confirmed with prostaglandin E_2 (10^{-6}M) which produced a two-fold rise in cAMP concentration after 45 minutes (Table 3).

Similar results were obtained when the toxin was incubated directly with a plasma membrane rich fraction prepared from isolated rabbit epithelial cells. Production of cAMP under control conditions increased linearly up to 30 minutes followed by a gradual 'levelling-off' after the final 30 minutes' incubation. Assays which included toxin closely followed this pattern with no statistically significant effect on cAMP generation (n=5) at a time when flux changes due to the toxin were observable. There was also no evidence for the involvement of cGMP in the action of this toxin. The time course of cGMP production in membranes was identical for both toxin-containing and control media (n=5). The responsiveness of the membrane preparation to stimulation was assessed for adenylate cyclase with VIP and guanylate cyclase with heat stable *E. coli* enterotoxin. In both instances marked stimulation occurred.

Discussion

Antibiotic-associated colitis is now recognised to be

Table 1 Effect of *Clostridium difficile* toxin on unidirectional and net Na and Cl fluxes over 20 minute periods immediately before and after addition of toxin-free medium (A) or toxin-containing medium (B)

<table>
<thead>
<tr>
<th></th>
<th>Na</th>
<th>Cl</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ms</td>
<td>sm</td>
</tr>
<tr>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control (n=6)</td>
<td>17.56±1.80</td>
<td>11.78±1.41</td>
</tr>
<tr>
<td>Toxin-free medium (80 - 100 min)</td>
<td>14.43±0.90</td>
<td>10.34±0.58</td>
</tr>
<tr>
<td>Toxin-containing medium (40 - 60 mins)</td>
<td>11.48±1.34</td>
<td>10.81±1.18</td>
</tr>
<tr>
<td>Control (n=7)</td>
<td>10.72±0.96</td>
<td>10.50±0.91</td>
</tr>
<tr>
<td>Toxin-containing medium (40 - 60 mins)</td>
<td>10.02±0.02</td>
<td>11.0±0.01</td>
</tr>
</tbody>
</table>

All fluxes expressed as μEq cm^{-2} h^{-1}. ms = mucosa to serosa flux, sm = serosa to mucosa flux. + values signify absorption, − values signify secretion. p values refer to significance of difference from its control.

Table 2 Unidirectional and net Na and Cl fluxes over 20 minute periods immediately before and 80 to 100 minutes after addition of toxin-containing medium utilising Ca^{2+} free medium serosally.

<table>
<thead>
<tr>
<th></th>
<th>Na</th>
<th>Cl</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ms</td>
<td>sm</td>
</tr>
<tr>
<td>Control (Ca^{2+} free) (n=6)</td>
<td>14.72±1.23</td>
<td>8.22±0.86</td>
</tr>
<tr>
<td>Toxin (Ca^{2+} free)</td>
<td>12.81±1.52</td>
<td>7.55±0.83</td>
</tr>
</tbody>
</table>

Mean tissue resistance (R) expressed in ohms cm^{-2} (n=12).
Caused by *Clostridium difficile* toxin. It is usually associated with damage to the colonic mucosa giving rise to the characteristic sigmoidoscopic appearances. These cytotoxic effects of the toxin have been shown in tissue culture. The clinical picture, however, is often one of watery diarrhoea without bleeding, commonly without visible mucosal damage and this is consistent with the idea that the toxin can provoke diarrhoea in the absence of mucosal damage, perhaps by acting as a secretogogue. In our study we have used a crude extract which probably contains both an enterotoxin and a cytotoxin. This crude *Clostridium difficile* toxin did, indeed, stimulate chloride secretion and reduced sodium absorption in isolated rabbit ileum. The observations that the ion flux responses to the toxin were selective and were abolished by removal of calcium from the serosal bathing medium suggest that the toxin activated a specific secretory process rather than simply exerting a non-specific damaging effect. The absence of histological evidence of tissue damage also tends to support this conclusion.

The observation that our control medium had similar electrical effects to the toxin suggests that they were mainly because of components of the culture medium. The ionic basis for the electrical response is unclear; certainly no significant effects on Na and Cl fluxes were observed with control medium.

The cyclic nucleotide studies failed to reveal evidence for an action involving cAMP, adenylate cyclase, or guanylate cyclase and thus the action of this toxin is distinct from that of other toxins including cholera toxin, and *E. coli* heat labile toxin which activate adenylate cyclase and of *E. coli* heat stable toxin which activates guanylate cyclase. Vesely and co-workers recently showed that *Clostridium difficile* cytotoxin stimulated guanylate cyclase activity in cultured hamster fibroblasts and in hamster ileum and caecum. In these experiments, however, adenylate cyclase activity was stimulated in the supernatant obtained from homogenising whole gut tissue. Cyclase activity in the pellet fraction, presumably containing plasma membranes, was not stimulated in these experiments. Our studies were performed on purified plasma membrane fractions of epithelial cells, the site of the transport cyclases. It seems likely, therefore, that the guanylate cyclase activity stimulated in hamster ileum and caecum was that normally located in other sites, possibly the muscle coats and serosa.

The inhibition of toxin-mediated secretion, by removal of calcium from the serosal bathing medium, suggests that extracellular calcium is required for full activity of the toxin. The response to theophylline after toxin exposure in calcium-

Table 3:

<table>
<thead>
<tr>
<th></th>
<th>45 minute</th>
<th>90 minute</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control medium (200 µl)</td>
<td>5.47±0.89</td>
<td>4.82±0.51</td>
</tr>
<tr>
<td>Control medium + toxin (200 µl)</td>
<td>5.01±0.63</td>
<td>4.59±0.577</td>
</tr>
<tr>
<td>PGE$_2$ (10$^{-4}$M)</td>
<td>11.72±1.72*</td>
<td>—</td>
</tr>
</tbody>
</table>

* p<0.01
deprived tissues confirms their viability and potential to respond to other stimuli. The mechanism for the action of calcium in controlling intestinal secretion is unclear but the involvement of a calcium-dependent regulator protein (calmodulin) has been proposed. Furthermore, work recently reported in an abstract implicates calcium in the control of a neutral NaCl brush border uptake process. Our data are not incompatible with such an involvement of calcium in toxin-induced secretion. A full description of the role of calcium must, however, await further study.

Other secretagogues which require extracellular calcium for their action include 5-hydroxytryptamine (5 HT), acetylcholine, and the calcium ionophore A23187. It is conceivable, therefore, that Cl difficile toxin activates a similar calcium-gating process. Alternatively, it may act by liberating a local mediator, such as 5 HT or acetylcholine. Although the effects of the toxin are not identical with those of 5 HT—for example, 5 HT decreases NaCl chloride flux, which the toxin does not—they are sufficiently similar to invite further study.

Whatever the underlying mechanism, it seems likely that these secretory effects of Cl difficile toxin contribute to the diarrhoea associated with this infection.

References

6 Giugliano LG, Mann GF, Drasar BS. Other enterotoxic enteropathies—the use of tissue culture for the detection of Clostridial toxins. Eur J Chemo Antibiotics. (In press.)